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ABSTRACT 

The knowledge of quadratic functions is essential in improving learners' conceptual 

understanding of algebraic and geometric concepts. Hence, such knowledge is 

attained when learners understand quadratic functions' multiple representations. 

Therefore, the focus of the study was to explore the role of the Activities, Classroom 

discussions, and Exercises [ACE] teaching cycle in improving Grade 12 learners’ 

conceptual understanding of quadratic functions. I adopted the APOS theory as a lens 

to improve learners' conceptual understanding of quadratic functions. Additionally, I 

used Merriam’s case study design which incorporated the ACE teaching cycle as an 

instructional style for data collection with 30 criterion sampled learners. Subsequently, 

learners posit various conceptual obstacles after implementing the ACE cycle. Firstly, 

they seem to grapple at the action level relating to the knowledge of the properties of 

quadratic functions. Secondly, they posed conceptual obstacles to quadratics while 

interacting with quadratic functions. Thirdly, learners posed difficulties transitioning 

from one form to another, posing pitfalls to conceptual understanding quadratic 

functions. Lastly, they faced difficulty making connections between the forms of 

quadratic functions due to a deficiency in solving techniques. However, through the 

intervention of the exercise, learners' conceptual obstacles seem to be remedied. Yet, 

some conceptual obstacles appeared to be persistent: failure to correctly translate 

quadratics, confusion about the 𝑦-intercept of the function and the 𝑦-coordinate of the 

vertex, and difficulty linking the connection between the range and vertex of a function. 

Therefore, I recommend that future studies be broadened on learners understanding 

of the vertex and the 𝑦-intercept of quadratic functions. 
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1. CHAPTER ONE: INTRODUCTION AND 

BACKGROUND 

1.1. INTRODUCTION 

In this chapter, I present a synopsis of the study. The overview contains the 

background and motivation of the study, the statement of the research problem, the 

purpose of the study, and the research question and methodology. Then, the chapter 

ends with the significance and a chapter summary. 

1.2. BACKGROUND AND MOTIVATION 

Literature reveals that conceptual understanding of the concept function remains a 

challenge to most learners. Consequently, the study of functions continues to receive 

significant input from different researchers (de Sousa & Alves, 2022; Santia & 

Sutawidjadja, 2019; Sönnerhed, 2021; Wilkie, 2021; Zaslavsky, 1997). However, 

questions about learning functions in mathematical understanding remain 

unanswered. Therefore, the focus of this study limits itself to quadratic functions when 

addressing the unanswered questions. I paid attention to the following: 

(1) The emergence of quadratic functions from algebra. 

(2) Philosophical underpinnings towards quadratic functions. 

(3) Mathematical understanding of quadratic functions. 

(4) The concept of a quadratic function. 

(5) Conceptual obstacles that inhibit learners' understanding of quadratic functions; 

and 

(6) mitigating learners' conceptual obstacles of quadratic functions. 

1.2.1. The emergence of quadratic functions from algebra 

Quadratic functions emerge from the understanding of arithmetic and algebraic 

concepts. Algebra is the study of mathematical symbols and procedures for engaging 

with those symbols (Ko et al., 2021). Conceptually, quadratic functions draw from the 

knowledge of arithmetic and algebraic concepts: arithmetic studies, properties of their 

operations and roots (Rahayu et al., 2021). However, learners encounter difficulties in 



 

2 

 

transitioning from arithmetic to algebraic concepts. These difficulties include failing to 

make connections between algebra and arithmetic concepts because learners treat 

algebra as abstract. O’Connor and Norton (2016) found that lacking both the action 

and process of algebra inhibits the development of an object and schema level of 

understanding quadratics. O'Connor and Norton also noted that the absence of these 

levels of understanding hindered comprehension of quadratic function concepts.  

Algebraic concepts are structural and operational; structural algebra entails 

objects, and operational algebra involves computational processes (Sfard, 1991). 

Sfard’s view of the term object concurs with Arnon et al.’s (2014) view, as they both 

narrow it to the ability to construct a static structure. The static structures are mental 

constructions the learner has reflected upon various times, i.e., the action and process 

levels of understanding. The learners' reflection on the action and process develops 

an object level for understanding (Bansilal et al., 2017). Thus, the ability to see a 

quadratic function as a process and object is indispensable for conceptual 

understanding. 

Algebra precedes quadratic functions; thus, learning quadratic functions is done 

after learners have learned algebraic concepts (Ko et al., 2021). Learning quadratic 

function is embedded in the skills developed through algebraic reasoning. Algebraic 

reasoning entails forming generalisations from prior knowledge of computations, 

constructing these ideas into meaningful symbolic systems, and exploring the concept 

of functions (Barana, 2021). Algebraic reasoning permeates all mathematical 

concepts, meaning that without understanding the concepts, learners will struggle with 

conceptual comprehension of quadratic functions. In high school mathematics, 

learners are engaged in algebraic reasoning when they can be able to make 

connections between the concepts of the algebraic and quadratic functions.  

Algebraic reasoning allows the learner to operate in the indeterminate form of 

algebra when dealing with quadratic functions. However, algebra is not easily 

understood due to its complexity since it is indeterminate (Pinto & Cañadas, 2021). 

Usiskin (1998) explains the indeterminacy of algebra using five tenets, i.e., an equation 

to solve, a formula, a property, an identity, and a function with a direct variation. I 

adapted the last conception, i.e., a function with a direct variation to study quadratic 



 

3 

 

functions. Treating algebra as an equation of a function enhances algebraic reasoning. 

Algebraic reasoning provides affordances for understanding the development of the 

quadratic function concept. 

1.2.2. Philosophical underpinnings toward quadratic functions 

Learning mathematics is inseparable from mathematics concepts. In the process of 

learning mathematics, the concept of a quadratic function is a vital aspect to be 

understood by the learner since its understanding lies in the transition from arithmetic 

and algebra. The transition has been viewed from the traditional perspective since it 

is assumed that learners would have mastered the necessary skills in arithmetic before 

interacting with algebra. These learned arithmetic skills permit the learner to treat the 

quadratic function as not a new concept (Wagner & Kieran, 2018). To demonstrate 

this transition, for the example given that 𝑓(𝑥) = 𝑥2 + 1. From the function, the learner 

must first appreciate that this is a quadratic function. Thus, from it, we can determine 

the 𝑥-intercepts, which is a skill embedded in algebra, and determine the value of 𝑓(2), 

which is a skill embedded in arithmetic. Therefore, the learner engaging in this activity 

will demonstrate their understanding of prior knowledge of arithmetic and algebra. 

Understanding prior knowledge allows learners to interact with any quadratic 

function task since functions are the basis of mathematics (Cahyani & Rahaju, 2019). 

Learners are not expected to demonstrate an understanding of the quadratic function 

but to show how the concept is developed. The development of mathematical 

concepts is the basis for learning mathematics. In developing mathematical concepts, 

learners are engaged in abstraction since concepts are abstract. The concept 

development process emanates from abstraction, which is a conscious activity of 

making connections of mathematical structures (Narhasanah et al., 2017). The 

process of abstraction is considered the last resort and the highest form in the concept 

development process. Arnon et al. (2014) assert that abstraction is the process of 

encapsulating processes. Therefore, this abstraction is organised into four levels: 

action, process, object, and schema. 

In context, the abstraction of quadratic functions looks at the concept in four tenets, 

i.e., action, process, object, and schema. At an action level, the quadratic function 

implies that the learner can now use the Table method using arithmetic skills to 
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determine the vertex, find the vertex using the formula, and describe the shape of a 

quadratic function. Secondly, at the process level, the learner can now define the 

quadratic function, sketch the function using the Table method, and understand the 

meaning of the vertex of the quadratic. Thirdly, the object level allows the learner to 

understand the word problems of quadratic function concepts and can interact with the 

transformation of the graph. Lastly, the schema level is the highest form of abstraction 

since it is an organised and logical framework of all the tenets above. 

The process of abstraction involving quadratic function is in line with Monaghan 

and Ozmantar (2006), which is an activity of vertically recognising prior mathematical 

knowledge into a new mathematical structure. This type of abstraction requires the 

learner to reflect on their constructed schema. The reflection process is called 

reflective abstraction. Cahyani and Rahaju (2019) assert that reflective abstraction, 

which is mathematics highest form of thinking, is the ability to construct new 

understanding through the mechanism of linking certain mathematical constructs 

(Dubinsky, 2002). In context, learners' reflective abstraction is the process of 

acknowledging the fact that quadratic functions are constructed from the transition of 

arithmetic to algebra, as articulated above. Moreover, reflective abstraction can 

develop new knowledge of learners by identifying problems and then seeking solutions 

using different appropriate procedures from the action construct to the developed 

schema.  

The mechanism applied to access this abstraction can be promoted by using a 

mental structure involving the action, process, object, and schema (APOS) (Dubinsky, 

2002). Reflective abstraction is intertwined with the mathematical understanding of 

quadratic function. Understanding is explained in the next section. However, blending 

understanding with the APOS constructs results in the development of the genetic 

decomposition of the quadratic function concept. Genetic decomposition is a mental 

structure a learner might demonstrate to understand a mathematical concept 

(Dubinsky, 2002). Moreover, genetic decomposition is a tool that shows how the 

concept of a quadratic function is organised in the learner's mind (Jojo, 2019). The 

development of the genetic decomposition is guided by the researcher’s knowledge of 

understanding the quadratic function concepts.  
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The genetic decomposition allows the researcher to offer affordances to learning 

quadratic functions using the four tenets of the APOS. The tenet action is the cognitive 

structure of using prior knowledge as an external part in dealing with operations. 

During the action level of understanding, the learner working with 𝑓(𝑥) = (𝑥 + 1)2 

engaged with the quadratic function concept like a vertex. This learner will need a 

vertex formula to locate it and then move to the process stage. The process is the 

cognitive structure that uses the learned actions; but during the process, learners 

conduct these operations as part of the internal process. The process level of 

understanding produces learners who no longer require a formula to determine the 

vertex. Instead, the learner can now determine any vertex of a quadratic function at 

this stage and link it to the axis of symmetry. The action and process are encapsulated 

into an object level of understanding.  

The object is the cognitive structure that allows learners to acknowledge the 

learned actions and processes as totality transformations and constructs the 

knowledge explicitly (Luneta & Makonye, 2010). The learner operating at this level of 

understanding can make a linkage between quadratic function concepts. Schema is 

the collection of the action, process, and objects into a skeletal framework to help 

learners solve any mathematical problem presented. The learner operating at this 

stage of understanding can simply make connections of the concepts of a quadratic 

function, and the knowledge can be applied in real-life instances.  

The four tenets laid above are coined into APOS theory by Dubinsky (2002). APOS 

theory is the framework of how mathematical concepts are developed and learned 

(Arnon et al., 2014). Moreover, the effort of the APOS theory alludes to what is going 

on in the learner's mind when trying to learn mathematics concepts. Learners engaged 

in the process of understanding are said to be involved in construction. The movement 

through the four tenets of understanding alluded to above strengthens constructivism, 

which is the reference for the emergence of new understanding through constructive 

action, process, and objects. Thus, my philosophical underpinning is rooted in 

constructivism, which is a philosophy explaining how mathematical knowledge occurs 

in a learner's mind, which conforms to APOS theory.  
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1.2.3. Mathematical understanding of quadratic functions 

The concept of understanding in mathematics is fluid and poses a challenge in defining 

it. Thus, understanding is a covert behaviour and remains the internal proponent of 

the learner. Understanding, simply put, is a process that goes beyond knowing more 

than routine procedures (Perkins & Blythe, 1994). Furthermore, understanding is fully 

immersed in the content to explain, find evidence and examples, and represent the 

topic in a new way (Raheem & Jawad, 2019). This process of understanding 

emphasises not only the correctness of the eventual answer but has shifted to 

emphasising the process, context, and comprehension. The learning of mathematics 

should advance understanding of the concepts being taught. 

The concept of mathematical understanding was also researched by Skemp 

(1976), who identified two types of understanding, i.e., instrumental, and relational 

understanding. Instrumental understanding is perceived as rules without reasons, 

while relational understanding is the process of knowing what to do and why it is done 

in that context. For example, if a learner is given the following function 𝑓(𝑥) = 𝑥2 −

2𝑥 + 1, and it is required to determine the value of (0; 𝑝). This question nurtures 

instrumental understanding, requiring learners to substitute zero into the function. 

Therefore, the question will not be difficult for learners as it is routine work. 

Nickerson (1985) asserts that understanding entails the ability to see the concept 

in a deeper context, make connections of the concept, and envision the concept using 

mental structures. This view coincides with Star's (2005) view of deep procedural 

understanding, which is the ability to comprehend a mathematical concept flexibly 

while taking all the critical aspects into a thorough judgment. Moreover, understanding 

is the ability to coherently build context or cognitive structures (Hiebert & Carpenter, 

1992). As a result, understanding is seen as an action or an outcome of actions. 

Sierpinska (1994) clarified this by proposing three tenets that guide understanding, 

i.e., an act of understanding, understanding and the process of understanding. These 

three tenets are intertwined and interwoven in that one cannot operate in isolation from 

the other. Sierpinska’s view of understanding is that the process is a cognitive task 

achieved after a lengthy period. 



 

7 

 

 Duffin and Simpson (2000) extend Sierpinska’s (1994) view of understanding. 

They hold that the tenets proposed by Sierpinska are the building blocks for 

conceptual understanding. The concept of understanding is fluid and extraordinarily 

complex, lacking research grounding. Therefore, I adopted Sierpinska’s view of 

understanding. Concisely, I view conceptual understanding as the ability of the learner 

to make connections between mental representations of a mathematical concept. 

Subsequently, this view is like what Rittle-Johnson (2017) termed procedural flexibility, 

which nurtures both types of knowledge in an iterative bidirectional view. In addition, 

understanding is the outcome of representations linked to mathematical concepts. 

This definition of understanding is in line with the APOS theory. The theory outlines 

four tenets that depict learners' ability to understand mathematical concepts. The 

movement through these tenets permits the construction of the highest form of 

understanding. 

Sierpinska’s view of understanding permits me to assess learners' comprehension 

of mathematical concepts. Knowing that, one can argue to say what informs the 

assessment of conceptual understanding. In the present study, assessment of 

conceptual understanding was informed by the APOS theory, which allowed me to 

grade learners’ understanding irrespective of the correctness or incorrectness of the 

answer. I used the APOS theory with its instructional method, i.e., the ACE teaching 

cycle to categorise the learners' understanding at various levels based on their 

procedural flexibility. This theory is in line with the view by Hiebert and Carpenter 

(1992) that understanding cannot be inferred from one activity of a single response. 

This means that for one to say they understand the quadratic function concept, they 

can now interiorise the concept.  

In acknowledging that understanding is a complex and challenging task, this 

means that if I am to assess it, I need to access various connection networks of 

concepts that a learner has. Therefore, when I assess learners' conceptual 

understanding of quadratic functions, I look for traits of comprehension of the 

concepts. Thus, the ability of the learner to conduct a mathematical task means that 

some glimpses of understanding are there, and not to the extent. Therefore, assessing 

understanding looks for the learners' conceptual obstacles that inhibit connections 

between the mathematical concepts, the procedures, and the connections made 
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between the mathematical representations (Hiebert & Carpenter, 1992). Learners' 

understanding viewed from the APOS theory demonstrates learners' potential at 

various levels. Therefore, this form of understanding can be assessed through the 

different tenets of the theory.  

1.2.4. The concept of a quadratic function 

Parent (2015) asserts that a function is a one-to-one mapping from one set, its domain, 

to another, its range. A function is a relation in which the first coordinate is never 

repeated. Every input has only one output. For example, if there is a coordinate (1; 2) 

on a function, it cannot be repeated. However, functions are limited to quadratic 

functions in the present study. The quadratic function is one of the forms 𝑓(𝑥) = 𝑎𝑥2 +

𝑏𝑥 + 𝑐 where the variables 𝑎, 𝑏 and 𝑐 are integers and both (determinate and 

indeterminate) and the value of 𝑎 ≠ 0 (Nielsen, 2015). The quadratic function can be 

expressed in three different forms, i.e., standard form, i.e., 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 

factored form, i.e., 𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2), and vertex form, i.e., 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 +

𝑞 (Ousby et al., 2008). In high school mathematics, learners interact with the critical 

components of quadratic function, i.e., the intercepts, turning point, axis of symmetry, 

domain, range, and the effects of determinate and indeterminate parameters (Parent, 

2015). Due to its indeterminate and abstract nature, the comprehension of quadratic 

function also hinges on the strength of connections and interrelatedness of its 

concepts, as mentioned above (Mutambara et al., 2019).  

The strength of connections of the tenets of quadratic function revolves around the 

integration of algebraic reasoning. This implies that the objective of quadratic function 

content shifts from the abstract nature to the concrete nature. The connection is seen 

as follows, given 𝑓(𝑥) = 𝑥(𝑥 + 6), the learner must use their skills in arithmetic and 

algebra to determine the 𝑥-intercepts, the vertex, the axis of symmetry, its domain and 

range. Parent (2015) found that learners struggled with making the connections as 

they failed to note that the 𝑓(𝑥) is quadratic. However, suppose learners could interact 

with the question; in this case, it should have allowed them to solve equations to 

determine the 𝑥-intercepts, demonstrate the relationship of the parent function to other 

related functions, and sketch the quadratic function using the vertex form, standard 

form, and factored form.  
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The integration of algebraic reasoning yields learners to transit from one 

representation to another by demonstrating the interrelatedness of the concept. The 

transition from one representation to another is depicted when learners are required 

to sketch the graph of the quadratic function. Given 𝑔(𝑥) = −2𝑥2 it is challenging for 

learners to visualise this abstract concept but to see, they need a representation 

concretely. The strength of the connection is the view that learners' understanding is 

rooted in prior knowledge of functions. Learners must connect prior and present 

knowledge (Pirie, 1988). This view indicates that conceptual understanding is an 

ongoing process and is not achieved in isolation. Therefore, when learners develop 

their conceptual understanding of quadratic function concepts, they make various 

levels of understanding, as Dubinsky (2002) outlined in action, process, object, and 

schema. Consequently, these learners are guiding themselves to make these 

connections since understanding is flexible and a covert behaviour (Hiebert & 

Carpenter, 1992). However, during the process learners can hit a snag which poses a 

conceptual obstacle in comprehending the concept. 

1.2.5. Learners’ conceptual obstacles of quadratic functions 

Learning quadratic functions is crucial in mathematics since a sound understanding of 

it is essential to excel in a variety of mathematics content (Hiebert & Carpenter, 1992). 

Therefore, improving their conceptual understanding of quadratic functions is 

paramount to learners’ courses as they progress working with other polynomials (Didiş 

et al., 2011). Learners’ development of conceptual understanding of quadratic 

functions implies that they can: solve quadratic functions using different strategies to 

find the critical points of the function; and use their understanding of quadratic 

functions to analyse, represent and create graphs.  

Literature asserts that conceptual understanding quadratic functions is vital; 

however, learners grapple to grasp the concept, which posed conceptual obstacles 

(Astuti & Hidayat, 2020; Didiş et al., 2011; Kotsopoulos, 2007; Mutambara et al., 2019; 

Parent, 2015). Conceptual obstacles lie in the process of accommodation and 

assimilation that learners make when they interact with mathematical concepts. The 

former is the process where learners make integration of prior knowledge, while the 

latter is the change in learners' schema triggered by new knowledge (Wagner, 2010). 
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During the accommodation process, learners encounter conceptual obstacles due to 

the difficulty of changing the existing schema to link to the present. Therefore, 

conceptual obstacles are cognitive difficulties that can be elaborated by mathematical 

concepts that underpin learners’ prior learning.  

 Conceptual obstacles inhibit learners’ comprehension of the quadratic function 

concept. The conceptual obstacles include, amongst others, i.e., misinterpretation of 

graphical information; failing to note the relation between quadratic equation and 

quadratic function; inability to comprehend the analogy of quadratic function and linear 

functions; failure to transit from one form of a quadratic function to a standard form, 

vertex form or factored form; and emphasising one unique coordinate at the expense 

of others (Zaslavsky, 1997). 

Moreover, Nielsen (2015) noted that learners had a conceptual difficulty of the 

concept variable 𝑥 in 𝑓(𝑥) = (𝑥 − 3)(𝑥 − 5). In the study, the learner assumed that the 

variable 𝑥 is not consistent in the product. These conceptual obstacles are inherited 

from fragmented knowledge of algebra. In a related study, Zaslavsky (1997) found that 

learners could not use the implicit content linked to the concept of the axis of 

symmetry. Thus, conceptual obstacles were not only noted when learners solved 

quadratics, even when they were required to sketch the graphs. 

 If conceptual obstacles are not addressed, this will result in fragmented 

knowledge of quadratics functions (Ozaltun-Celik & Bukova-Guzel, 2017). 

Fragmented knowledge of quadratic functions results from unaddressed conceptual 

obstacles. Consequently, a fragmented understanding of quadratic functions results 

from teaching strategies. Hiebert et al. (2007), cited in Parent (2015), concur by stating 

that teaching strategies in high school promote a fragmented understanding of 

mathematical concepts. This posed difficulties in conceptual understanding quadratic 

functions. 

1.2.6. Mitigating learners' conceptual obstacles of quadratic functions 

Therefore, mitigating learners' conceptual obstacles of quadratic functions requires 

the teacher to conduct frequent diagnosis and to provide remedies to the conceptual 

obstacles. Hence, the remedy for learners' conceptual obstacles of quadratic functions 



 

11 

 

requires learning for understanding. Fong (1982) explained the two terms diagnosis 

and remedy in a mathematical context. A diagnosis is a process to determine the 

nature of the conceptual obstacle, and a remedy is a method afforded to the learner 

to mitigate the hindrances (Fong, 1982). Mathematical understanding is a fluid concept 

in the subject area; however, the study is limited to conceptual understanding when 

dealing with the concept. Conceptual understanding mathematics means the 

capability to act and think flexibly with a concept. 

In addition, conceptual understanding is a process that goes beyond knowing, and 

it is more than the collection of mathematics concepts; it is not the idea of knowing the 

procedure only. Conceptual understanding is the learners' skills to justify why a 

mathematical notion is true and makes sense. This justification process requires 

reflective thought, where learners can connect prior knowledge to new knowledge 

while modifying their present schemas (Widada et al., 2020). This process can happen 

either in two ways: assimilation and accommodation. As explained above, it is noted 

that if the assimilation process is not in cooperation with accommodation, it yields 

conceptual difficulties. 

Therefore, the learning activities responsibility is to provide affordances for 

learners' understanding of quadratic functions. The affordances are achieved when 

the assimilation does not contradict the accommodation process. Confronted by these 

reflective thoughts, this challenged me to introspect on what nurtures an 

understanding of quadratic functions and how the growth of learners’ conceptual 

understanding of quadratic functions can be enhanced. As a result, activities, 

classroom discussions, and exercises [ACE] teaching cycle became a quest for me to 

undertake the present study to improve learners’ understanding of quadratic functions.  

The ACE teaching cycle is an instructional approach guided by the constructivist 

theory (Arnon et al., 2014). Glasersfeld (1991) asserts that constructivism is a theory 

of learning that holds that mathematical concepts are developed in an active process 

of creating knowledge. Four principles guide constructivism, i.e., learners possess 

prior knowledge of mathematical concepts; mathematical knowledge is constructed 

uniquely and individually; the learning process is active and reflective; and learning is 

developed in nature (Glasersfeld, 1991). These four principles are embedded within 
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the APOS theory. The first principle considers that the learner has specific knowledge 

of quadratic functions at the action level of understanding, lacking development. The 

second principle is in line with the process level of understanding as this is a covert 

activity of the learner to reflect on the actions developed to move to the second level 

of understanding. 

The third principle requires the learner to practically reflect on the developed 

actions and processes to operate at the object level of understanding quadratic 

functions. The last principle is the last resort of understanding such that the learners' 

schema is developed, and it permeates them to reflect on all three levels of 

understanding. Therefore, mathematical understanding is a covert behaviour that 

occurs in an individual's mind (Bodner & Elmas, 2020). The learner must develop their 

understanding since the knowledge is built from their unique web of prior concepts. 

Therefore, this is stimulated by the teacher's activities to nurture learners' 

mathematical understanding (Akilli & Genç, 2017). The instructional approach that can 

be used to implement constructivism in the classroom is the ACE teaching cycle 

(Arnon et al., 2014). 

The ACE teaching cycle is grounded in the APOS theory; as such, the nature of 

instruction adheres to the perspective of the theory on what it means to understand 

mathematics (Santos, 2019). The first construct of the cycle activities deals with the 

learners working cooperatively on mathematics concepts designed with mental 

constructions. Secondly, the classroom discussions involve interaction with the 

developed schema in the activities, and lastly, the exercises provide affordances for 

learners to explore the concept further. 

1.3. RESEARCH PROBLEM 

Knowledge of quadratic functions is vital in improving learners’ conceptual 

understanding. Such knowledge is attained when one comprehends the multiple 

representations of functions and analyses them graphically (Mutambara et al., 2019). 

Learning representations are not limited to fluency in algebraic and geometrical 

processes but also hinge on the strength of connections and interrelatedness of 

quadratic function concepts (Santia & Sutawidjadja, 2019). This complex web of 

quadratic functions concept, which is determinate and indeterminate, is relational 



 

13 

 

(Ubah & Bansilal, 2018). For example, studies report that learners struggle with basic 

processes and procedures of quadratic functions, such as simplification and finding 

intercepts (Ozaltun-Celik & Bukova-Guzel, 2017; Parent, 2015). An inability to 

comprehend quadratic functions may indicate poorly focused knowledge on how to 

get the intercepts, turning point, the axis of symmetry, domain, range, and the effects 

of parameters in quadratic functions. Poor attention to these critical aspects of 

quadratic functions may explain why learners possess an undeveloped, 

underdeveloped, and fragmented understanding of mathematics concepts (Ubah & 

Bansilal, 2018). Unfocused attention to essential aspects of quadratic functions was 

also observed in Didiş et al.’s (2011) study, which asserted that learners preferred 

factorisation but struggled with simplifying to find 𝑥-intercepts. In a related study by 

Eraslan (2005), learners applied factorisation to determine the 𝑥-intercepts. These 

learners promoted instrumental understanding and did not read the graph for the same 

purpose because they failed to represent the 𝑥-intercepts on a graph. Despite studies 

investigating misconceptions (Eraslan, 2008; Fonger et al., 2020; Kotsopoulos, 2007; 

Makonye & Shingirayi, 2014; Ruli et al., 2018), using different teaching methods (Astuti 

& Hidayat, 2020; Benning & Agyei, 2016) and learners thinking (Nielsen, 2015; Parent, 

2015) of quadratic functions, hardly any attention was paid to improving the 

understanding of such functions. Hence there is limited research focusing on 

improving learners’ understanding of quadratic concepts. Therefore, the present study 

explored how learning for mathematical understanding could enrich learners’ 

conceptual understanding of quadratic functions through the ACE teaching cycle. 

1.4. PURPOSE OF THE STUDY AND RESEARCH QUESTIONS 

The study aimed to explore the role of the ACE teaching cycle in improving Grade 12 

learners’ conceptual understanding of quadratic functions. To pursue the purpose of 

the study, the study answered one research question: 

• How does the ACE teaching cycle improve learners’ conceptual understanding of 

quadratic functions? 
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1.5. RESEARCH METHODOLOGY 

I adopted an interpretive approach to qualitative research. Qualitative research 

explores and understands the meanings of the individual (Bogna et al., 2020). In this 

study, I explored the learners’ conceptual understandings as they interacted with 

mathematics tasks in the classroom. I employed Merriam’s (1998) view of the case 

study design. Merriam asserts that a case study is the complete portrayal and 

investigation of a bounded phenomenon. As suggested by Merriam, the boundaries of 

the study were the Grade 12 learners’ conceptual understanding of quadratic functions 

concepts, i.e., the axis of symmetry, vertex, the location of 𝑥-intercepts, whether the 

graph opens up or down, the maximum or minimum point of the graph, the 𝑦-intercept, 

and the transformations through the ACE teaching cycle. Therefore, the study adopted 

purposive sampling of 30 Grade 12 mathematics learners who participated in the 

study. I collected qualitative data using the tenets of the ACE teaching cycle. 

In the activities and exercise phases, I have used Task 0, a learning task, and a 

test that conforms to documents. Additionally, I have used classroom discussions that 

conform to unstructured interviews (Merriam, 1998). The study used content analysis 

to analyse the qualitative data in a deductive way. Moreover, I used the APOS theory 

as a lens to analyse the data I collected in the activities, classroom discussions and 

exercises. I ensured rigor in the analysis by attending to conformability, credibility, 

dependability, and transferability, as recommended by Guba (1981). 

1.6. SIGNIFICANCE OF THE STUDY 

Potentially the study adds knowledge to the literature on the learners' conceptual 

understanding of quadratic functions. Moreover, the study will guide researchers and 

policy makers on the conceptual obstacles that learners exhibit when interacting with 

quadratic function tasks. 

1.7. RESEARCH SETTING 

The participants in this study were Grade 12 learners at a school in Namakgale Circuit 

under Mopani District in Limpopo Province. The sample was chosen based on 

performance in mathematics marks from the previous Grade. The school has Xitsonga 
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and Sepedi speaking learners from nearby villages and around the school's location, 

and offers science, commercial, and general subjects. The school has one class 

offering Physical Science because most learners study Mathematical Literacy. 

1.8. STRUCTURE OF THE STUDY 

The study aimed to explore the role of the ACE teaching cycle in improving Grade 12 

learners’ understanding of quadratic functions. To pursue the purpose, the study 

answered the following research question: How does the ACE teaching cycle improve 

learners’ conceptual understanding of quadratic functions? 

I presented five chapters in this dissertation. Chapter one of outlined the 

introduction, background to the study, problem statement, the purpose of the study 

and research questions, overview of the research methodology, significance of the 

study, overview of the study, and lastly, the chapter’s summary. In the second chapter, 

I presented the theoretical framework, which established the boundaries of the study. 

Additionally, I presented the literature review, which is divided into the following 

sections: quadratic function concept, mathematical understanding, and representation 

of quadratic functions, assessing learners' understanding, understanding of quadratic 

functions, conceptual obstacles about quadratic functions, and contextual teaching of 

quadratic functions.  

Chapter three discusses the research methodology that guided the study. In the 

chapter, I present a rationale from the qualitative research paradigm, research design, 

the sampling method employed, the data collection method used, data analysis 

procedures, quality criteria, and ethical considerations. In the fourth chapter, I 

simultaneously analysed and discussed the research findings. I further divided the 

chapter into data analysis and discussions, synthesis of the research findings. I offered 

a summary of the chapter as the last section. Lastly, I presented the recommendations 

and conclusion of the study. This chapter is divided into the introduction, research 

design and method, interpretation of the research findings, recommendations, 

limitations, and the conclusion of the study.  
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1.9. SUMMARY OF THE CHAPTER 

In this chapter, I presented the background and motivation of the study, the problem 

statement, the purpose of the study and research questions, the research setting, an 

overview of the research methodology, the significance of the study, and an overview 

of the study. The chapter concludes by providing an overview of the dissertation.  
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2. CHAPTER TWO: LITERATURE REVIEW 

2.1. INTRODUCTION 

The knowledge of functions is one of the essential concepts in all mathematics content 

(Eisenberg & Dreyfus, 1994). The study of functions generally receives much input 

from different researchers (Hartter, 2009; Hight, 1968; Wilson, 1994; Zaslavsky, 1997). 

Wilson (1994) noted that the emphasis on functions is the glue to mathematical 

concepts and a representation of actual instances. Although different scholars have 

researched the concept of functions and their studies, the question of “mathematical 

understanding of functions remains unanswered.” In search of how the mathematical 

understanding of quadratic function can be nurtured, I have detailed this chapter into 

seven sections. 

In the first section, I present the theoretical framework of the study, i.e., APOS 

theory, coupled with a synopsis of recent research that utilised the APOS theory. In 

the second section, I present the breakdown of the quadratic function concept. Thirdly, 

I present an extensive review of mathematical understanding and representation of 

quadratic functions. The fourth section deals with assessing learners' conceptual 

understanding. Moreover, the fifth section focuses on learners' conceptual 

understanding of quadratic functions. The sixth section discusses the research on 

learners’ conceptual obstacles about quadratic functions. The seventh section looks 

at how quadratic functions can be taught for conceptual understanding, presenting the 

contextual teaching of quadratic functions. Lastly, I gave the summary of the chapter. 

2.2. ROLE OF THEORY 

2.2.1. My philosophical underpinnings of mathematics 

The mathematics pedagogy rests on a philosophy of mathematics (Thom & Howson, 

1973). The philosophy of mathematics is the aim or rationale behind the practice of 

teaching mathematics (Ernest, 1994). There exist two philosophies of mathematics: 

absolutist and fallibilist. The absolutist view of mathematics as an absolute, objective, 

and non-correctable body of knowledge that rests upon deductive logic. Absolutism 

views mathematical understanding as timeless. Although we may discover new 
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theories and truths to add, it is superhuman. The absolutists view mathematics as 

rigid, fixed, logical, inhuman, and abstract. 

The absolutist view may be communicated to the learners in the mathematics 

classroom if the teacher has adopted this kind of worldview (Ernest 1994). As such, 

the transfer of this kind involves giving learners unrelated routine mathematical tasks 

which involve the application of learned procedures and emphasise that every answer 

has a static method and a solution coupled with criticisms of any failure to achieve this 

answer using the memorandum method. For example, a teacher teaching quadratic 

functions will only teach one form of the function, i.e., 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, since they 

find this form easier to work with, unlike the other. The teacher will strictly tell the 

learner to use the Table method to draw the graph instead of using various methods. 

The absolutist philosophy of mathematics is teacher-fixed, meaning that the teacher 

is the source of knowledge in the mathematics classroom and cannot make mistakes. 

However, unlike the absolutist view, the fallibilist view of mathematics offers a 

different approach to mathematics education. The fallibilist considers mathematics 

human, correctable and changing (Ernest, 1994). Fallibilism views mathematics as the 

outcome of social processes. Thus, mathematics is open for revision regarding its 

proof and concepts. The fallibilist philosophy of mathematics is learner-fixed, meaning 

that it allows the learner to construct the mathematical understanding of certain 

concepts. For example, a teacher adopting this type of philosophy in the mathematics 

classroom would enable learners to interact with all the forms of quadratic functions 

that are the standard form, i.e., 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, vertex form 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞 

and the factored form 𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2). In this classroom, the teacher allows 

classroom discussions to influence the teaching and learning of the concepts of the 

quadratic functions and acknowledge that learners have some understanding of the 

concept.  

The constructivist theory of mathematics underpins the fallibilist view. 

Constructivism is a mathematical theory that views learners as constructors of 

understanding a particular concept through self-modification of cognitive structures 

(Glasersfeld, 1991). This process of self-modification is unconscious but goal-directed 

by which the learner reacts to mental disturbance by changing how they view the 
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concept. Essentially, this means that when a learner encounters a problem, they 

respond by thinking about it until it makes sense. Constructivism is rooted in the idea 

that learning occurs through teaching practices that construct knowledge over time. 

The constructivist approach permits the learner to develop a deeper conceptual 

understanding of the concept.  

The constructivism approach encourages the active and participatory role of the 

learner in their learning process as they engage in the activities. To assist learners in 

the learning process, the teacher must help them by scaffolding them to make 

connections of their prior knowledge. Constructivism is a cycle of conceptual levels 

that a mathematics learner progresses through when building a set of mathematical 

understanding by linking the current concept to their prior knowledge (Glasersfeld, 

1991). The conceptual levels are categorised into four tenets: the action level, process 

level, object level, and schema level of understanding (Arnon et al., 2014). These four 

tenets are conceptualised by Dubinsky (2002) in the APOS theory. Therefore, I 

adopted the fallibilist view of mathematics as my philosophy of mathematics. 

2.2.2. The theoretical framework of the study 

I adopted the APOS theory proposed by Dubinsky (2002) as a lens to explore learners' 

understanding of quadratic functions. The theory has been operationalised in various 

studies as follows: learners' and teachers' understanding of quadratic functions 

(Cahyani & Rahaju, 2019; Listiawati & Juniati, 2021; Mutambara et al., 2019); 

understanding of the vertex (Burns-Childers & Vidakovic, 2018); and learners’ 

obstacles of quadratic functions (Kabar, 2018; Ruli et al., 2018). The APOS theory 

affirms that understanding comes about when an individual modifies current mental 

structures (Bansilal et al., 2017). Even though learners can work on the same concept, 

their cognitive networks will vary depending on their general descriptions and mental 

constructions (Arnon et al., 2014). The general descriptions and mental structures are 

achieved through reflective abstraction. Reflective abstraction is the capacity to 

develop modern understanding through the instrument of connecting certain 

mathematical constructs (Dubinsky & Wilson, 2013). Therefore, the APOS consists of 

the following tenets, action, process, object, and schema (Dubinsky & Wilson, 2013). 
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An action conception is a modification of the external mental structures received 

in a logical manner (Arnon et al., 2014). This modification is first conceived as an action 

conception when it is a reaction to stimuli that a learner perceives as external. Thus, 

the change requires specific instructions and performing each stage of the 

transformation (Bansilal et al., 2017). Furthermore, an action conception may be a 

single step or multiple steps response, but it is characterised by each step being 

prompted by prior knowledge. When learners reflect on the action conception, they 

internalise it to a new coordinated mental structure; if they can reverse it, this is the 

process conception (Borji et al., 2018). 

They summarise the action and process conception as a coherent cognitive entity 

resulting in an object conception (Arnon et al., 2014). The schema conception is a 

network of concepts built using a variety of action, process, and object conceptions to 

represent a more significant mathematical notion (Dubinsky et al., 2013). 

Mathematical schemas are logically constructed to give learners abilities to use in 

mathematical activities (Arnon et al., 2014). They are built and rebuilt through personal 

learning processes. The APOS theory emphasises the critical role that an individual 

mental schema plays in creating latest information based on existing knowledge 

(Kazunga & Bansilal, 2020). Genetic decomposition is one of the major strategies 

employed in APOS studies. The genetic decomposition conceptualises how learners 

see how learning occurs in encapsulating new concepts (Arnon et al., 2014). 

2.2.3. Genetic decomposition 

Genetic decomposition is a constructional schema that a learner might undergo when 

a mathematical concept is taught (Mutambara et al., 2019). The genetic decomposition 

shows how the learner might formulate understanding at the various levels of 

understanding. Figure 2.1 presents the proposed genetic decomposition of the 

quadratic function concept based on the APOS theory adapted from Mutambara et al. 

(2019). Ndlovu and Brijlall (2015) hold that if the genetic decomposition cannot explain 

learners’ understanding of the concept, it needs revision. The revision emanates from 

the learners' responses to the learning tasks; as such, it cannot be immediate. The 

genetic decomposition needs to be assessed first since it is a hypothetical model of 

the learners' minds (Şefik et al., 2021). 
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Figure 2.1: The genetic decomposition adapted from Mutambara et al. (2019) 
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2.2.4. Studies that used APOS theory 

Studies that use APOS theory are based on classroom interaction between the 

learners and the teachers on a one-to-one session or with more than one learner. 

These studies generally employ the ACE teaching cycle and use various research 

designs, predominately the case study design. In most cases, mathematics activities 

are used as tools for data collection. Hence, learners are given activities to work on 

through the ACE teaching cycle in which they interact. Therefore, in this section, I 

briefly present how the APOS theory was used in different studies concerning the 

improvement of conceptual understanding of mathematics concepts (Arnon et al., 

2014; Asiala et al., 1996; Carlson, 1998; Childers & Vidakovic, 2014; Dubinsky, 2002).  

Childers and Vidakovic (2014) report on learners' meaning and interpretation of 

the vertex of a quadratic function concerning their understanding of quadratic function 

in two different representations, word problems and algebraic forms. Data from the 

study revealed several meanings of the vertex. The collected data were analysed 

using APOS theory (Asiala et al., 1996). The findings of the study revealed that it is 

essential to investigate learners' meaning of the vertex to assist them in overcoming 

conceptual obstacles. From this, I learned how the data analysing process is done 

through the APOS theory.  

A study by Arnon et al. (2014) investigates the development of mathematical 

concepts. They combine the APOS theory, Nesher’s theory, and Yerushalmy’s ideas 

of multiple representations in their work. The finding revealed that learners whose 

concept was introduced as concrete actions performed better than those who held the 

concept as tangible objects. They later conclude their study that the concrete action 

operates similarly to the action in the APOS theory. Furthermore, the findings showed 

that the action tenet of the APOS theory is a vital tenet to begin with the development 

of conceptual understanding of mathematical concepts. 

What I found meaningful and insightful in this study was how the authors explained 

the development of the action construct of the APOS theory. This supports the genetic 

decomposition adopted in this study. Asiala et al. (1996) report on a framework for 

research and curriculum development. The authors gave details of three components 

and provided examples of their application. The research adopted qualitative methods. 
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The study presented a theoretical analysis of the APOS theory and later described the 

ACE teaching cycle. In this study, I learned how data was collected and analysed 

through the use of intervention phases. 

In another study by Asiala et al. (1992), the authors report on how abstract algebra 

learners might come to understand permutations of finite sets and symmetries of a 

regular polygon. In the study, they first present what it could mean to understand what 

is expressed in APOS theory. Their results showed that teaching in context is effective 

in helping learners to develop strong conceptions of mathematics concepts. In their 

study, what I found more insightful was the presentation of what it means to 

understand mathematics concepts through the constructs of the APOS theory. 

 Carlson (1998) reports on learners' development of the function concept as they 

progress through their mathematics careers. The study used an exam measuring 

understanding of functions concept after the interviews were conducted with a sample 

of 5. Data analysis was done using the APOS theory to classify learners' conceptual 

views of function. The author concurs with Breidenbach's et al. (1992) findings that 

learners' understanding of functions was developed using the construction of activities 

with learners. In this study, I found that to improve learners' understanding of quadratic 

function, I have to be mindful of the activities I prepare as they are essential for 

learners' development of conceptual understanding.  

Learners' understanding of functions requires an understanding of variables to 

determine the 𝑥-intercepts for plotting the function. Trigueros et al. (1995) examined 

learners' understanding of variables; specifically, learners' ability to use and interpret 

the variable as unknowns through equations or functions. Their results are all based 

on a large sample of 164. The results revealed the persistence of conceptual obstacles 

and approaches characteristic of beginning algebra learners in school mathematics 

(Trigueros et al., 1995). The data collected suggest that most learners operate on the 

action level in which the solutions are anchored on the signs presented in the 

expressions of the functions (quadratic function). 

Moreover, learners rely on procedural understanding instead of conceptual 

understanding (Trigueros & Ursini, 1999). Finally, most learners possess difficulties 

moving into the object level of variables. From this study, I noted that to understand 
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quadratic function, one of my activities should be in word problems to make specific 

conclusions in terms of whether or not the author's views are correct. 

In conclusion, several issues that arose in the above reviewed studies became 

helpful in my study. Firstly, how conceptual understanding is outlined through the 

frame by Asiala et al. (1996) and Trigueros et al. (1995) enlightened my understanding 

of how APOS theory could be used in analysing the collected data to code the 

essential aspects of the data. Lastly, the genetic decomposition used by Mutambara 

et al. (2016) has influenced my research since it will be used as a tool to check if 

understanding was developed or not.   

2.2.5. The role of APOS in the data analysis 

The APOS theory can be used as a data analysis tool in a study (Şefik et al., 2021). 

When used as a data analysis tool, the theory looks for the mental structures formed 

in the participants' minds after applying the ACE teaching cycle. Different studies have 

used the APOS theory as a data analysis tool (Brijlall & Maharaj, 2015; Chimhande et 

al., 2017). The APOS theory in analysis guides the researcher in detailing how the 

learners view the concept. Therefore, to achieve this in this study, I have incorporated 

the genetic decomposition developed while doing the analysis. The genetic 

decomposition gave me the picture of what informs me that the learners operate at 

different levels of understanding. The APOS theory simplifies analysis because of the 

proposed hypothetical genetic decomposition developed. The theory allowed me to 

categorise the learners' understanding based on their levels of understanding. 

2.3. UNDERSTANDING THE QUADRATIC FUNCTION CONCEPT  

The concept of function has evolved. The evolution of the concept emanates from the 

competition between two notions, i.e., the geometric (expressed in the form of a curve) 

and the algebraic (expressed as a formula) (Kleiner, 1989). Hence, the evolution in 

mathematics has changed the concept of function from a curve described by motion 

to an expression representing the relation between two or more variables with its graph 

(Denbel, 2015). The concept of function has different formal and informal definitions. 

Therefore, I focused on the concept of a function expressed in algebra and not in a 

geometric. More formally, a function from 𝑥 to 𝑦 is defined as any subset of the 
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Cartesian product of 𝑥 and 𝑦,  such that for every value of 𝑥 ∈ 𝑅, there is exactly one 

value of 𝑦 ∈ 𝑅 such that (𝑥; 𝑦) ∈ 𝑓 (Denbel, 2015; Hasanah et al., 2021).  

Parent (2015) defined the concept function as any mathematical expression 

containing variable 𝑥 that has a definite value when a number is substituted for 𝑥. 

Moreover, a function is an expression that describes the relationship between two or 

more variables, where the input variable has exactly one output variable. In essence, 

this means that for every 𝑥 value, there can be only one 𝑦 value. In this study, the 

function definition is conceptualised to mean a relationship between two sets, i.e., 

domain, and range, where every domain is mapped to a specific range. The function 

is denoted by the letters 𝑓, 𝑔, ℎ, or 𝑘, which makes them different from equations 

(Wijayanti & Abadi, 2019). 

The development of the concept of function in mathematics prevailed in how 

functions were introduced and taught in high school mathematics. Today, functions 

are part of every high school mathematics curriculum. The expectation is that after 

Grade 12, learners will know the function concept in general and be familiar with 

specific types of functions, i.e., linear, quadratic, general polynomial, reciprocal, step, 

exponential, trigonometric, logarithmic, and piece-wise functions in different 

representations (Mpofu & Pournara, 2018). However, numerous studies show that 

learners have difficulties learning the concept of function in general. 

Moreover, functions are defined in learners' books in a modern sense. However, 

learners tend to hold a restricted image of the function concept. For example, Mpofu 

and Pournara found that some learners found it difficult to relate the symbolic to 

graphical representation. In addition to the problems arising from learners' restricted 

images is the asymptote concept of a function, as there is clear evidence that different 

representations of functions are treated in isolation without stressing the connections 

among them. The problem arises from the notion that the asymptote is either parallel 

or coincides with the axes. A study by Flesher (2003) revealed that learners posed 

conceptual obstacles with the concept of asymptote. For example, learners viewed the 

concept as a number and not linear. 

Conversely, there is some vague understanding among curriculum developers, 

textbook authors, and teachers regarding the purpose of application and modelling of 
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function concepts (Maf’ulah et al., 2019). Therefore, all this results in an identity crisis 

concerning learning the concept of function in mathematics classrooms. 

Consequently, if the identity crisis is not defined well, it births conceptual obstacles 

regarding the concept of function. Although the concept of function can be more 

complex, this study limits functions to quadratic functions. 

The quadratic function is one of the forms 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, i.e., the standard 

form, where 𝑎, 𝑏 and 𝑐 are integers with 𝑎 ≠ 0 (Nielsen,2015). Moreover, the quadratic 

function can also be expressed in a factored form 𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2), and vertex 

form 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞 (Ubah & Bansilal, 2018; Ndlovu, 2017; Ousby et al., 2018). 

The graph of a quadratic function is called a parabola, which is recognised for its U-

shaped in Figure 2.2 (Pender et al., 2011). Hence, each form demonstrates some 

graphical information related to the location of critical points on the graph. The 

standard form reveals the location of the y-intercept (0; 𝑐), the vertex form indicates 

the turning point of the graph (𝑝; 𝑞), and the factored form gives the roots of the 

function (𝑥1; 0) and (𝑥2; 0) (Hattikudur et al., 2012; Zaslavsky, 1997). However, Parent 

(2015) found that learners over-rely on one form.  

 

Figure 2.2: The Quadratic function 
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The concept of a quadratic function is one of high school mathematics' most 

important mathematical ideas (Benning & Agyei, 2016). This critical concept is 

essential in understanding mathematical concepts such as algebra and geometry 

(Clement, 2001). Learners' understanding of the knowledge of quadratic function is 

crucial for them to excel in much of the mathematics content. However, understanding 

quadratic functions posed conceptual obstacles of the need to connect different 

concept constructs (Didiş et al., 2011).  

The conceptual obstacles emanate from the failure to grasp the interrelated 

constructs of the quadratic functions, namely, the domain and range, intercepts, 

turning point (minima and maxima), asymptotes, intervals in which the function is 

increasing or decreasing, and the discrete or continuous nature of the graph (Parent, 

2015). The understanding of these constructs above results from comprehending the 

function's parameters. Studying the effects of the parameters of the quadratic function 

is vital for improving learners' understanding of the concept. Therefore, given 𝑓(𝑥) =

𝑎𝑥2 and altering the value of 𝑎 results in a vertical shift of the graph (Mutambara et al., 

2019). The bigger the value of 𝑎, the thinner the graph becomes, and the smaller the 

value of 𝑎, the fatter the graph (Figure 2.3). The value of 𝑎 also gives the shape of the 

graph. If 𝑎 > 0, that is 𝑎 ∈ [1; 2; 3; 4], its concavity upward, and if 𝑎 < 0, that is 𝑎 ∈

[−1; −2; −3; −4], its concavity downward. Figure 2.3 demonstrates the effects of the 

parameter 𝑎 as positive or negative.  
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Figure 2.3: Effects of changing the value of 𝑎 

However, learners possess a conceptual obstacle regarding the value of 𝑎, as it is 

noted by Zaslavsky (1997) that learners confuse the significance of 𝑎 in a linear 

function with the one in a quadratic function. This is so because of the nature of writing 

the standard forms of the two graphs as 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑔(𝑥) = 𝑎𝑥 + 𝑐. As 

such, from the standard forms, most learners assumed that 𝑎 gives the slope of the 

quadratic function. The interference of concepts learned in linear functions made 

learners determine the slope in quadratic functions (Ellis & Grinstead, 2008). 

Eraslan (2008) described that given the function 𝑓(𝑥) = 𝑥(𝑥 + 2) − 3, a learner 

graphed the parabola so that its concavity is upward but found the vertex at  (2; −3), 

which was an incorrect vertex of the graph. Moreover, when the learner was asked to 

express the graph of 𝑔(𝑥) = (𝑥 + 1)2 + 4 in the standard form, the response was given 

as 𝑔(𝑥) = −𝑥2 − 1𝑥 + 4. These conceptual obstacles are consistent with conflating 

the vertex and standard form. Ellis and Grinstead (2008) studied the standard form of 

a quadratic function and acknowledged that the 𝑎 parameter is interpreted as 
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influencing the shape of the graph. However, learners assumed that changing the 𝑎 

parameter in the vertex form does not alter the vertex's location.  

The quadratic function is given in the standard form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, changing 

the parameter 𝑏 while leaving 𝑎 and 𝑐 constant, results in translations for the range of 

values implemented. The quadratic function maintains its shape and direction Figure 

2.4. The parameter 𝑐 from the standard form deals with the vertical shifts of the graph 

Figure 2.5. Changing the value of 𝑐 moves the position of the vertex along the line 𝑥 =

−
𝑏

2𝑎
 (Owens, 1992). Learners may not recognise exceptional cases with the quadratic 

function assuming that 𝑐 does not exist when given 𝑓(𝑥) = 2𝑥2. When interacting with 

the standard form, interpreting the value of 𝑐 parameter is easier. 

iimimim

 

Figure 2.4: The effect of varying 𝑏 
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Figure 2.5: The effects of varying 𝑐 

2.4. UNDERSTANDING AND REPRESENTATION OF QUADRATICS 

The objective of learning quadratic functions is to understand the concepts involved, 

apply the concept, and describe the connection between these concepts (Minarni et 

al., 2016). Moreover, the role of mathematical understanding in learning quadratic 

functions is to deepen and develop learners’ understanding of mathematical concepts 

and their connections through different representations. Therefore, the integral of 

doing mathematics is for mathematical understanding and mathematical 

representation. The latter will be discussed later; mathematical understanding is 

characterised as levelled but not linear and a recursive process that occurs when 

thinking moves between levels of sophistication (Pirie & Schwarzenberger, 1988). 

These levels of complexity involve the movement between the action, process, object, 

and schema (Arnon et al., 2014). 
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Understanding characterised by the action level of sophistication entails using prior 

knowledge of quadratic equations and linear functions. Therefore, a learner performing 

an action level of understanding of quadratic function would require a formula to 

determine the 𝑥- intercept of the vertex that is 𝑥 = −
𝑏

2𝑎
. The learner can substitute into 

the formula of the vertex, that is, if given 𝑓(𝑥) = 𝑥2 + 6𝑥 + 8. For the learner to 

determine the vertex, would first note that 𝑎 = 1 and 𝑏 = 6, then substitute 𝑥 = −
6

2(1)
=

−3. However, Parent (2015) found that learners possessed a limited action level since 

most struggled with the substitution into the formula of the vertex. Instead, they wrote 

the value of the 𝑦-intercept as the 𝑦 value of the vertex. Also shared by Fonger et al. 

(2020) that learners often struggle to interpret the role of parameters while learning 

quadratic functions. 

Literature reveals that most learners struggle to tap into the process level of 

understanding (Kshetree et al., 2021; Mutambara et al., 2019). Some incorrectly 

viewed the parameter 𝑎 as the function's gradient, a conceptual obstacle of linear 

functions (Mutambara et al., 2019). Moreover, Mutambara et al. found that the 

learners’ prior knowledge of the function 𝑦 = 𝑎𝑥 + 𝑐 is the one that causes the 

conceptual obstacle of the quadratic function concepts. The levels of sophistication 

assume that the action level of understanding should provide an affordance to reverse 

the action and make connections with other concepts to develop the different levels of 

the APOS. In continuation with the example above, this would imply that the learner 

will acknowledge the 𝑥-intercept of the vertex and now will be able to determine the 𝑦-

intercept of the vertex. For example, if 𝑥 = −3, then 𝑓(−3) = (−3)2 + 6(−3) + 8 = −1, 

therefore, the vertex of 𝑓(𝑥) is (−3; −1). As a result of this level of quadratic function 

conceptual understanding, the learner can now find any vertex for a different function 

without the use of a formula by completing a square.  

The process is then encapsulated into an object-level understanding of quadratic 

functions. The object level of conceptual understanding permits the learner to reflect 

on the actions applied to a particular process, become fully aware of the process, and 

acknowledge that transformations can act on it and construct these transformations. 

The learner in this understanding can compare and relate two vertices of a quadratic 

function. That is, if given 𝑓(𝑥) = 2𝑥2 + 8𝑥 with vertex is (−2; −8) and 𝑔(𝑥) = 𝑥2 − 2𝑥 
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vertex is (1; −1); see Figure 2.6 below. The learner can also create a linkage between 

the concepts. This means that the learner is at the object level of understanding. 

However, Mutambara et al. (2019) found that the relation between the concepts of the 

quadratic functions is not fully acknowledged or recognised as learners continue to fail 

to see their connections.  

 

Figure 2.6: Showing the vertices of two quadratic functions in a representation 

Lastly, the highest level of sophistication is constructed through the collection of 

the action, process, and object-level of understanding together with the connections 

brought by the quadratic function concept. The schema level of understanding for 

quadratic function advances for conceptual understanding. Conceptual understanding 

is the process of deducing procedures from general mathematical relationships and 

the strength to connect mathematical notations and symbolism with the mathematical 

idea through the recursive process. In this level of conceptual understanding, the 

learner can now interact with constructs of the quadratic function. However, these 

levels of conceptual understanding for quadratic function are not independent but are 

intertwined and interwoven for one to ultimately achieve the level of understanding. 

Therefore, understanding complex concepts like quadratic functions requires 

integrating the levels of understanding (Ozaltun-Celik & Bukova-Guzel, 2017). Hong 

and Choi (2014) concur by stating that after learners have developed a conceptual 
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understanding, they can solve quadratic functions using different strategies, and use 

their understanding of quadratic functions to represent, analyse and create graphs.  

Sierpinska (2013) asserts that understanding should be viewed from three different 

lenses, i.e., the act of understanding, understanding and the process. According to 

Sierpinska, the act of understanding refers to a cognitive experience associated with 

linking what is to be understood with the basis of understanding. In this case, since 

learners will possess prior knowledge of quadratic equations, they have mental 

representations and models. The second lens, "understanding,” is achieved due to 

understanding. Thirdly, there are processes of understanding which involve links being 

done between acts of understanding through reasoning processes. In the context of 

Dubinsky and Wilson (2013), the act of understanding is the integration of the action, 

process, object, and schema. Therefore, conceptual understanding is a complete 

network of internalised mathematical concepts.  

However, mathematical understanding alone cannot nurture knowledge of 

quadratic functions. Hence, learners should also demonstrate mathematical 

representations to understand quadratic functions fully. This is so because any 

mathematical concept must be represented in some way if it needs to be developed 

into a schema (Arnon et al., 2014). Mathematical representation implies expressing a 

mathematical concept differently, such as graphs, symbols, and numeric forms (Santia 

& Sutawidjadja, 2019). Therefore, for learners to understand quadratic functions, they 

should demonstrate mathematical representation. For example, given the following 

coordinate, i.e., the 𝑥-intercepts (−4; 0) and (−2; 0) with vertex (-3; -1). The learner 

involved in the process of learning the concept will be able to sketch the graph in 

Figure 2.7 and can be able to derive a formula for the given coordinates in any form 

of the quadratic that is 𝑦 = 𝑥2 + 6𝑥 + 8.  
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Figure 2.7: The graph of 𝑦 = 𝑥2 + 6𝑥 + 8 

 The different mathematical representations above are an essential trajectory in 

mathematical understanding development (Parent, 2015). The mathematical 

representation will enable learners to create and use representation for quadratic 

functions concept to select, apply and translate among the representations to solve 

quadratic functions questions and to use representation to model real-life cases of 

quadratics functions. Numerous research has been conducted on mathematical 

representation (Bal, 2014; Caglayan & Olive, 2010; Santia & Sutawidjadja, 2019). 

These studies reported that mathematical representation is the central aspect of 

success in developing learners’ conceptual understanding of quadratic functions. 

Thus, doing mathematics is dependent on using representation since mathematical 

ideas are abstract (Dreher & Kuntze, 2015). Therefore, mathematical representation 

is essential in developing conceptual understanding (Duval, 2006). Moreover, using 

representation can nurture mathematical understanding only if learners are 

encouraged to actively create a connection between these representations (Dreher & 

Kuntze, 2015). 
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The learning of quadratic functions requires conceptual understanding and 

connections between different representations. These connections are essential for 

understanding the other parts of quadratic functions. The curriculum requires learners 

to be able to create and use tabular, symbolic, graphical, and verbal representations 

to understand quadratic functions (Parent, 2015). This is seen in Figure 2.8 below, 

where learners transit from one form of representation to another to develop a 

conceptual understanding of quadratic functions. 

 

Figure 2.8: Moving between the three representations of a quadratic function 

Therefore, working with the different representations of the quadratic function 

shown in Figure 2.7 above is a way to promote flexible competence (Parent, 2015), 

which emphasises conceptual understanding. Other researchers have commented on 

the importance of connections between the various representations of quadratic 

functions (Ellis & Grinstead, 2008; Knuth, 2000). Flexible understanding means that a 

learner possesses conceptual understanding rather than procedural understanding 

and can transit from one representation to another without any hindrances. Research 

on the importance of mathematical representation found that learners' representation 

ability is the central aspect of success in understanding mathematical concepts (Bal, 

2014). 

The success of problem solvers is rooted in the ability to build problem 

representations in problem-solving situations (Zhang, 1997). Choosing 
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representations allows learners to practice balancing the different aspects of 

representations (Chapman, 2010). The understanding of quadratic function is built 

from a strong knowledge of mathematical representations. Kieran (2014) asserts that 

the concept of the quadratic function is a form of understanding algebra with various 

representations. However, learners possess little knowledge of mathematical 

representations involving quadratic functions. 

Knuth (2000), cited in Parent (2015), found that learners appear to understand 

connections between equations and graphs. Also, learners relied on algebraic solution 

methods versus graphical methods. The observations of the study indicated that 

learners depended on rote instrumental than relational understanding. The 

recommendation was that learners be assisted through mathematical representations 

to develop conceptual understanding. Thus, having conceptual understanding allows 

learners to apply and adjust the procedure to fit the problem they are busy with (Parent, 

2015). This is also supported by a study of Suwarsono and Khabibah (2022) that 

learners with a limited level of understanding often struggle to represent quadratic 

functions graphically.  

Ozaltun-Celik and Bukova-Guzel (2017) found that the participant struggled to 

identify and draw a graph for 𝑓(𝑥) = 𝑥2 + 2𝑥 − 3. In interacting with the function, it was 

noted that the learner could find the point (1; 0) but failed to determine the other. This 

resulted from the method employed in finding the coordinates that the learner assigned 

several values of 𝑥 instead of solving the equation. The method employed by the 

learner resulted in another point after the substitution of 𝑥 = 0 into the function that is 

(0; −3). As a result of the learner, the learner drew an incorrect graph. On the notion 

of identifying the function, the learner said the function is linear. This showed that the 

learner’s action level of understanding was immature. 

2.5. ASSESSING LEARNERS’ CONCEPTUAL UNDERSTANDING 

Assessing learners' conceptual understanding of quadratic function involves taking 

two points in mind: understanding as a connection made between mental 

representations, which is different from the result of understanding. To assess 

conceptual understanding of quadratic functions, Heibert and Carpenter (1992) state 
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that understanding cannot be inferred from a single response to a single activity, 

meaning that a learner can have presented a correct solution without understanding. 

In support of Heibert and Carpenter’s view, Parent (2015) found that learners can use 

the formula to determine if the vertex that is 𝑥 = −
𝑏

2𝑎
, to determine the 𝑥-coordinate of 

the vertex but struggles to find 𝑦- coordinate. As such, the correct solutions of the 𝑥-

coordinate of the vertex cannot infer an understanding of the concept. Instead, several 

activities are needed to develop a profile of knowledge, and these tasks include 

efficiency to accurately substitute into 𝑥 = −
𝑏

2𝑎
, and skill in carrying out the procedure 

to later on substitute −
𝑏

2𝑎
 into 𝑓(𝑥) to flexibly determine the intercept of the vertex. In 

recognising that understanding is a complex network, thus if we are to assess learners' 

conceptual understanding, we need to consider their thinking skills as per the activity 

given. Moreover, we need to consider the deep procedural knowledge that the learner 

demonstrates to reach the final solution. Rittle-Johnson (2017) asserts that this deep 

procedural knowledge is the flexibility of the learner to pose instrumental and relational 

understanding iteratively. 

A typical mathematics classroom focuses on a narrow collection of well-defined 

activities which foster instrumental understanding at the expense of advancing 

relational understanding (Skemp, 1976). As a result, the assessment conducted in the 

class is similar to the one that learners once interacted with them as an example. If 

learners get correct solutions, teachers assume they understand the tested 

mathematical concept. However, the correct solution does not guarantee possession 

of understanding since the attainment of conceptual understanding is a long ongoing 

process that is levelled.  

The notion of teaching for correct answers impedes teaching for conceptual 

understanding. An interesting idea is the non-binary nature of understanding 

(Nickerson, 1985). Suppose a learner has interacted with the quadratic function 

concept. In that case, they will have some understanding of this concept due to their 

prior knowledge of quadratic equations and linear functions, however limited or 

inappropriate links within their understanding might be. As a result, we cannot ever 

have a complete understanding, but we can continually develop understanding by 

developing our schema. In light of these points, I can consider two ways to assess 



 

38 

 

conceptual understanding, i.e., through the lens of learners’ conceptual obstacle and 

mathematical representations. 

2.5.1. Assessing learners conceptual understanding of quadratic functions 

The conceptual obstacles that learners commit while learning quadratic functions is in 

synergy with their conceptual obstacles of the concept (Mathaba & Bayaga, 2019). 

Learners’ difficulties result from conceptual obstacles of the false ideas developed in 

algebraic concepts. Therefore, conceptual obstacles generally surface when learners 

integrate prior knowledge with a new topic (Rittle-Johnson & Schneider, 2015). 

Moreover, conceptual obstacles result from the combination of scarcity of logic and 

learners’ ability depending on inappropriate understanding of mathematics concepts. 

The ability to rely on undeveloped knowledge leads to conceptual obstacles of the 

concept to be learned. As such, the developed conceptual obstacles give birth to 

challenges, which re-surfaces when learners carelessly fail to relate mathematical 

concepts or reflect on the solution (Mathaba & Bayaga, 2019). Thus, conceptual 

obstacles result from learners’ failure to apply algebraic rules when working with 

quadratic function concepts. 

In mathematics classrooms, conceptual obstacles are essential since they add to 

the learners' learning process as errors (Makonye & Hantibi, 2014), and can be 

classified into three categories: procedural, conceptual, and arbitrary (Luneta & 

Makonye, 2010). Procedural errors are challenges that are displayed by learners when 

they cannot use computation properly. This type of an error, following the APOS theory 

of understanding, hinders the development of the action level of understanding. Luneta 

and Makonye (2014) noted that learners with procedural errors struggled to determine 

the roots of the quadratic function. For example, given (2𝑥 − 3)(3 − 𝑥) = 4, learners 

failed to notice that this is a quadratic equation. Instead, when they wanted to solve, 

learners converted the equation into an expression writing it as 2𝑥 − 3 + 3 − 𝑥 + 4. 

The results of the study revealed that learners struggled with the distributive law to 

write it in a standard form that is 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and then solve for the roots.  

Conceptual error happens when learners fail to understand the concept involved 

in a given task or connect the relationship between concepts (Luneta & Makonye, 

2010). Conceptual error hinders the development of the process, object and schema 
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levels of understanding resulting from procedural obstacles. The first conceptual error 

of quadratic functions is an inability to interpret the information contained in the 

function. Learners assume that the two functions are the same without acknowledging 

the importance of parameters, for example, 𝑓(𝑥) = (𝑥 + 3)2 + 1 and 𝑔(𝑥) = (𝑥 − 3)2 +

1 since the parameter 𝑎 is equal to one in both functions (Luneta & Makonye, 2010).  

Secondly, failure to note the relationship between quadratic functions and 

quadratic equations. This conceptual error is seen as a stumbling block when learners 

are required to draw the graph since they fail to determine the 𝑥-intercepts and 𝑦-

intercept of the quadratic function. The third conceptual error is the failure to note the 

similarities between the quadratic and linear functions. Learners often assume that the 

parameters in the linear mean the same thing as the ones in the quadratic function 

since they are both written using the same variables that are 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 

𝑔(𝑥) = 𝑎𝑥 + 𝑐.   

The arbitrary error occurs when learners change the question to suit their level of 

understanding. For example, a learner is given a function and required to determine 

the values of 𝑥 for specific restrictions. Given 𝑓(𝑥) = 2(𝑥 + 1)2 determine for which 

values of 𝑥 is 𝑓(𝑥) > 0. In this case, learners prefer writing to change the inequality to 

an equation instead of the solution of the inequality (Makonye & Shingirayi, 2014). 

Therefore, assessing learners’ conceptual understanding through the lens of 

conceptual obstacles involves checking if the learners could show some action, 

process, object, and schema level of understanding even though they encountered 

some conceptual obstacle. 

2.5.2. Assessing understanding through mathematical representations 

Learners' use and transition through mathematical representation forms are essential 

to learning. However, mathematical representations are internal and external 

generalisations of mathematical concepts constructed as an internal and external 

mental network (Castro et al., 2022). Therefore, mathematical representation can 

assess learners' conceptual understanding of quadratic functions. The learners’ ability 

to transit from one representation to another demonstrates understanding at a certain 

level based on the APOS theory of understanding. The model for mathematical 

understanding above shows how we can assess conceptual understanding of 
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quadratic functions based on the genetic decomposition. The model depicts the 

movement between the different representations as an interactive process.  

The interactive process of moving through the representation depicts an improvement 

in learners' conceptual understanding of the quadratic functions. Consequently, a 

learner who has improved their conceptual understanding of quadratic functions 

understands how they interact with the form of the function and the relationships 

between them. Figure 2.9 depicts what this conceptual understanding might be like if 

it is to be assessed. This means that learners understand expressions, graphs, tables, 

and quadratic equations. Additionally, the learner understands the transition in moving 

from the different quadratic forms and knows what each form's parameter highlights. 

Suppose one view one of the expressions or equations is as depicted in Figure 2.9. In 

that case, one can note that learners understand how to compute each form of a 

quadratic function algebraically to determine the other forms. Additionally, the forms 

guide the learner in deciding if a given type of form can and cannot do with it to solve 

quadratic function problems.  
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Figure 2.9: Conceptual understanding of quadratic functions 

Various studies reveal that many learners have difficulties translating from one form 

of representation to another (Adu‐Gyamf et al., 2019; Castro et al., 2022; 

Nurrahmawati & Sudirman, 2021). The reviewed research in this section is necessarily 

based on the concept of quadratic functions per se since literature relating to 

representations of quadratic functions involving the three forms is scarce. However, 

from the literature, it is clear that mathematical representation posed challenges for 

learners. Learners’ multiple representation skills are the heart of success in 

mathematics understanding. The process involved in translation from one 

representation to another is critical in the learning process involved in quadratic 

functions.  

However, Nurrahmawati and Sudirman (2021) found that representation in a 

mathematics lesson is not highly realised as the most paramount for understanding 

and ignores the forms of representations developed by learners. Mathematical 
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representation allows the learner to demonstrate their difficulty concerning the learned 

topic. Adu-Gyamfi et al. (2019) found that translation inability portrayed by learners 

was an essential factor in influencing learning process performance. This is achieved 

by looking at the learner's inability to translate from one representation into another.  

Furthermore, many learners misunderstood the translation process involved in 

algebraic, tabular, and graphic representations (Adu-Gyamfi et al., 2019). For 

example, learners cannot fully understand the information given in the algebraic form, 

such as 𝑓(𝑥) × 𝑔(𝑥) > 0. These conceptual obstacles negatively affect their 

mathematical representation skills. Nurrahmawati and Sudirman (2021) support the 

notion by stating that most learners face a conceptual impediment when dealing with 

algebraic and graphical representations. In contrast, Adu-Gyamfi et al. (2019) 

indicated that learners found it difficult to deal with translation from algebraic 

representations. Furthermore, one of the results of research by Castro et al. (2022) 

asserted that learners could translate from Table to graphical forms and are often 

challenged by translation from algebraic form. 

However, Castro et al. (2022) revealed that learners possessed difficulties in the 

process of translational form, especially from tabular to algebraic form. Adu-Gyamfi et 

al. (2019) studied learners' translational tasks between the forms of representations 

and found three common conceptual obstacles that emerged from the data. These are 

failure in implementation, failure to interpret, and preservation conceptual obstacle. 

Out of the stipulated conceptual obstacle identified by Adu-Gyamfi et al. is that the 

second one is the most applicable quadratic function as learners often find it 

challenging to interpret the information given in an algebraic form. 

2.6. THE LEARNING PROCESS OF QUADRATIC FUNCTIONS 

The learning process involved through the quadratic function needs one to be familiar 

with the content to be learned and the performance trends engaged with the concept. 

The content to be learned needs to be accessed through the CAPS document, and 

the performance trends are sourced from the diagnostic reports that are often 

published after the matric exams. Therefore, this section looks at the learning process 

through the content and the trends of the concept.  
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2.6.1. Learning the content of quadratic functions 

The learning and teaching about functions, mainly quadratic functions, are determined 

by the outcomes set in the CAPS document see Figure 2.10 below. Once the 

outcomes are known, teachers should decide the structure of teaching and learning 

quadratic function. School curricula worldwide have taken different approaches to 

include function in their curriculum. More specifically, the South African policy is cited 

from the CAPS document depicted in Figure 2.10 below (DBE, 2011). 

 

Figure 2.10: Overview of the function concept 

The approach cited above is silent about how teachers should deliver the content 

to improve learners' conceptual understanding of quadratic functions. As such, 

teaching and learning to understand a function is still problematic. This is so because 

of the unclear definition of the concept of a function. The relationship between the 

conception of function and the mental image of learners is vital in the development of 

functions and has been widely researched over time (Ubah & Bansilal, 2018; Parent, 

2015; Mutambara et al., 2019). The study of function is an ongoing debate in the 

mathematics research field. It is noted that learners continue to lack understanding of 

functions notations that are 𝑓(𝑥); 𝑦; 𝑓: 𝑥; and (𝑥; 𝑦). Parent (2015) noted that learners 

struggle to note that this is the same question, for the example given the following 
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function 𝑓(𝑥) = 2𝑥2 + 3; 𝑦 =  2𝑥2 + 3; 𝑓: 𝑥 → 2𝑥2 + 3; and (𝑥; 𝑦) ∈ {𝑦 = 2𝑥2 + 3}. For 

learners to develop a rich understanding, they need to be exposed to various 

representations (Parent, 2015), including symbolic, graphic and algebraic 

representations. 

2.6.2. Performance trends in quadratic functions from 2017 to 2021 

The enrolment of learners in writing the Grade 12 mathematics exam in 2021 

increased compared to the other years. Thus, learners' performance in the content 

varied yearly. The Table in Figure 2.11 indicates variations in the performance over 

five years. However, performance in 2021 showed a slight improvement in learners in 

some concepts, but it is clear that this improvement does not guarantee that they 

understand the content. This is so because learners and teachers in mathematics are 

over-reliant on past exam papers to drill for marks. The focus on the past exam papers 

inhibits the teaching and learning of basic concepts in the mathematics classroom. 

 

Figure 2.11: Overall achievement rates in mathematics 

Therefore, the mathematics exam is divided into two papers: paper one and paper 

two. My focus is on paper one as the content that the study explored is being examined 

in paper one. In 2021 mathematics paper one, any learner could correctly answer the 

knowledge and routine questions and score good marks. However, achieving good 

marks does not connote understanding the concept. As a result, of lacking 

understanding of the concept but having good marks, it was noted that learners' 

algebraic skills were poor, and they also lacked the essential mathematical 

competencies. Therefore, lacking these skills hinders conceptual understanding other 

concepts like quadratic functions.  
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The findings from the report alluded that since teachers and learners in the 

mathematics classroom are over-reliant on the previous question papers, this 

demeans the focus on developing learners’ profound understanding of concepts. As 

such, it was found that learners performed poorly in questions that nurture 

understanding of concepts. This poor performance is depicted in the graph below 

(Figure 2.12). However, the focus of our study, questions one and seven, should be 

considered. The two are the main focus because they cover the content of quadratics 

in the final paper. Moreover, the questions are further looked at by considering the 

sub-questions (Figure 2.13). 

 

Figure 2.12: Average performance per question 
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Figure 2.13: Analysis of learners’ performance adapted from the DBE (2021) 

The learners' performance in question one demonstrates a conceptual obstacle of 

the concept. The conceptual obstacle includes, among others, i.e., failure to factorise 

quadratics, rounding off challenges, and treating a quadratic inequality as an equation. 

The first conceptual obstacle deals with determining the roots of the function. Learners 

were given 𝑥2 − 2𝑥 − 24 = 0 and required to determine the roots. It was noted that 

most learners struggled to factorise the quadratic instead, they wrote 𝑥(𝑥 − 2) = 24. 

Furthermore, their solutions were 𝑥 = 24 or 𝑥 = 26 (DBE, 2021). This conceptual 

obstacle emanates from how learners learn the topic in class. The learners might have 

encountered this type of quadratic 𝑥2 + 2𝑥 = 0 because teachers drill them. They 

might have forgotten to highlight essential aspects in the development of the concept.  

The second conceptual obstacle resulted from failure to use the quadratic formula 

to determine the roots. Learners were given 2𝑥2 − 3𝑥 − 3 = 0 and further instructed to 

leave their solutions to two correct decimal places. However, they failed to substitute 

into the formula; as such, they wrote 𝑥 =
−3±√−32−4(2)(−3)

2(2)
 instead of 𝑥 =
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−(−3)±√(−3)2−4(2)(−3)

2(2)
 (DBE, 2021). Omitting the brackets resulted in wrong solutions, 

and they struggled to round off. The third conceptual obstacle emanated from the 

learners' approach to inequalities, viewing them as equations. They were given 𝑥2 +

5𝑥 ≤ −4, and their solution were (𝑥 + 1)(𝑥 + 4) = 0 followed by 𝑥 = −1 or 𝑥 = −4 

(DBE, 2021). The learners did not realise the concept behind the question; therefore, 

they did not understand the solution.  

The conceptual obstacles identified in question one surfaced again in question 

seven. This is so because the content examined in question one serves as essential 

knowledge for question seven. Therefore, in question seven, learners failed to write 

the roots of the function in a coordinate form while given the factored form that is 

𝑓(𝑥) = (𝑥 + 4)(𝑥 − 6). Furthermore, they demonstrated difficulty in determining the 

vertex of the function from the factor. As such, most learners wanted to use the formula 

𝑥 =
−𝑏

2𝑧
 instead of determining roots. Using formulas without conceptual understanding 

connote conceptual obstacles of concepts. Moreover, learners persistently showed a 

poor understanding of a range and domain of a function.  

2.7. CONCEPTUAL OBSTACLES THAT INHIBIT UNDERSTANDING 

Relational and instrumental understanding seem to compete for attention in 

mathematics classrooms. Teachers are found in the hub, whereby they nurture 

instrumental instead of relational understanding. For example, in teaching the vertex, 

they stress using formulae even if the function is in the vertex form. Some studies 

focus on conceptual versus procedural understanding of quadratic functions 

(Mutambara et al., 2019; Parent, 2015; Ubah & Bansilal, 2018). Mudaly and 

Rampersad (2010), cited in Ubah and Bansilal (2018), conducted research with South 

African Grade 11 learners, where they investigated learners’ conceptual 

understanding of the graphical representation of quadratic functions. Their results 

revealed that most learners depended on procedural understanding as their 

conceptual understanding was weak. 

Parent’s (2015) study investigated how learners develop a conceptual 

understanding of the graph of the quadratic function. The results revealed that learners 

found it easy to interact with the standard form (𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐) then the vertex 
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form (𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞) when engaged in quadratic function questions. For 

example, learners might struggle to determine the roots of a quadratic function where 

𝑎 = 1 and 𝑏 and 𝑐 are non-zero, such as 𝑥2 + 8𝑥 + 6 = 0, might have difficulties 

interacting with 𝑥2 + 8𝑥 = 0 where 𝑐 = 0 and therefore not visible in the equation 𝑥2 +

8𝑥 = −6. Didiş et al. (2011) assert that a quadratic function in which the parameters 𝑏 

and 𝑐 are zero does not look like a quadratic function to learners and assumes that 

the parameter does not exist. For example, learners might say that 𝑦 = 𝑎𝑥2 + 𝑏𝑥 does 

not have the 𝑦-intercept because the value of 𝑐 is zero. However, in this function, the 

value of 𝑐 exists, and the 𝑦-intercept would be (0; 0) (Zavlasky, 1997). 

In the continuation of the Parent’s (2015) study, it was noted that learners confused 

the 𝑦-intercept of the standard form with the 𝑦-coordinate of the vertex form. Thus, it 

is indicated that learners who immersed in procedural understanding make several 

conceptual obstacles (Siyepu, 2015). Zaslavsky (1997), cited in Parent (2015), 

researched the conceptual obstacles that hinder learners' conceptual understanding 

of quadratic functions. The conceptual understanding noted are: (1) interpretation of 

graphical information; (2) relation between quadratic equation and quadratic function; 

(3) analogy between linear functions and quadratic functions; (4) change in the form 

of a quadratic function to standard form, vertex form or factored form; and (5) focus on 

one particular coordinate. 

Dede and Soybas (2011) studied the experience of mathematics pre-service 

teachers with a quadratic function. The data were collected using semi-structured 

interviews and questionnaires and analysed through phenomenology. The results 

revealed that learners in those classrooms have incorrect conceptions and ideas about 

the quadratic function, which yielded their understanding to be termed procedural. 

Zazkis et al. (2003) studied a horizontal translation of quadratic functions of the form 

𝑓(𝑥) = (𝑥 + 2)2 and its relationship to 𝑔(𝑥) = 𝑥2. The researchers wanted to 

investigate learners' difficulties with the translation of quadratic functions. In an 

interview session, the participants were asked to predict, check and explain the 

relationship between 𝑓(𝑥) and 𝑔(𝑥). Data gathered from the interviews were analysed 

in terms of common trends of mathematical explanations. The findings of the study 
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revealed that learners who failed to sketch the graph of 𝑓(𝑥) correctly demonstrated 

procedural understanding. 

A study by Borgen and Manu (2002) investigated learners’ understanding of 

calculus problems. In their research, they posed the question of determining the 

stationary point of the quadratic function 𝑦 = 2𝑥2 − 𝑥 + 1 and then decided if it had a 

minimum or maximum. The data was collected using a video camera as learners 

engaged with the problem. Data obtained from the videotape and learners' written 

work were the basis for the analysis of this study. The study employed Schoenfeld’s 

(1998) four layers of analysis and Pirie and Kieren’s (1994) model to analyse the 

learners’ mathematical understanding. The researchers found that one learner lacked 

an understanding of connecting with related concepts. Additionally, the analysis of 

Pirie and Kieren’s theory showed that learners could not fold back as these learners 

did not develop conceptual understanding.  

The work presented by Sajka (2003) investigated an average learner's 

understanding of functional equations. In an interview session, the researcher asked 

a learner a non-standard question. The question was to give an example of a function 

𝑓 such that for any real numbers 𝑥, 𝑦 in the domain, the following equation holds: 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). Data were analysed using the precept theory by Gray and Tall 

(1994). This theory consists of three components: a process producing a mathematical 

object and a symbol representing either a process or an object (Gray & Tall, 1994). 

Sajka acknowledged that learners had a problem understanding the question at the 

beginning, and after a long interaction with the researcher, the learner showed some 

improvements. To achieve this, the researcher presented the following functions to the 

learner, i.e., 𝑓(𝑥) = 𝑥2 − 2𝑥 + 3 and 𝑔(𝑥) = 𝑥2 + 5. 

A difficulty with some of the learners is other conceptual obstacle of the term 

variable (Vaiyavutjami & Clements, 2006). For example, in the factored form of the 

quadratic function, that is (𝑥 − 2)(𝑥 + 4) = 0, some learners assume that the solution 

of the equation that is 𝑥 = 2 and 𝑥 = −4 stands for a different value. They noted that 

learners held this conceptual obstacle of assuming that the 𝑥 determined above can 

be substituted simultenously as (2 − 2)(−4 + 4) = 0  meaning that 𝑥 can be 2 and -4 

at the same time. Didiş et al. (2011) confirm these findings, stating that learners can 
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determine the correct answer without understanding how the zero product affirms that 

one of the factors will be equal to zero.  

Learners' understanding of quadratic functions is rooted in the poor action level of 

understanding of the quadratic equations. This is so because learners prefer focusing 

on the positive solution of the equation more often. Didiş et al. (2011) assert that 

learners do not understand the solutions of the quadratic functions. This was seen 

from the point that learners gave one answer to 𝑥2 = 𝑎 instead of two. For example, 

learners are given the function 𝑓(𝑥) = 𝑥2 − 4 and required to determine the 𝑥-

intercepts. They would give the positive value only instead of two that is 𝑥 = ±2. Didiş 

et al. suggest that learners do not understand the meaning of ± in the square root.  

Research on how learners understand the functions of quadratics demonstrates 

that learners prefer drawing functions from equations of functions over generating an 

equation of a function from its graph. When working with graphs, Zaslavsky (1997) 

noted that learners made assumptions about quadratic functions based on the graph 

they saw and did not use their understanding of a quadratic function to assist them in 

interpreting the function. For example, given the graph below in Figure 2.14, learners 

may assume that the 𝑦-intercept does not exist in the function. Moreover, they may 

think that the function has a vertical asymptote. Therefore, Zaslavsky also noted that 

learners could not use implicit information related to the axis of symmetry unless it is 

drawn.  
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Figure 2.14: Graph of 𝑔(𝑥) 

Learners have difficulties in determining the 𝑥-intercepts of the quadratic, which 

leads them to fail to graph the graph. This idea is also supported by Bossé and 

Nandakumar (2005) that learners struggle with multiplication facts, which makes it 

difficult for them to determine the factors for the expression in the form quickly 𝑎𝑥2 +

𝑏𝑥 + 𝑐. These difficulties increase when 𝑎 ≠ 1, for example, 8𝑥2 + 10𝑥 + 20 or 20𝑥2 +

30𝑥 + 100. Given these cases, learners are left with options to use the quadratic 

formula or to complete the square. However, the use of the other method to determine 

the 𝑥-intercepts does not mean that learners have entirely understood the concept 

since those who were given this equation struggled 𝑥(𝑥 − 2) = 0. From the equation, 

Kotsopoulos (2007) found that learners would cancel the 𝑥 on both sides of the 

equation by dividing the equation by 𝑥, and learners lose track of the root 𝑥 = 0. 

Numerous researchers have identified conceptual obstacles that have blocked 

learners' understanding of quadratic functions. Parent (2015) defines conceptual 

obstacles as features of learners’ knowledge that is repeatable and seen in the 

solution. Conceptual obstacles mean the learner has purposefully solved an answer 

while thinking it was right. Parent’s (2015) study noted some conceptual obstacles 
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similar to Zaslavsky (1997) work. The conceptual obstacles mentioned are, i.e., 

various representations of the quadratic function, relational reading and 

interpretations, the concept of a variable within the equation, and notation within the 

graph of a function. 

Kotsopoulos (2007) found that high school learners encounter many difficulties 

when factoring quadratic functions. In the same study, Kotsopoulos (2007) pointed out 

that learners get confused when the quadratic function is shown in a different form, 

either standard form, vertex form, or factored form. Ellis and Grinstead (2008) built 

from the work of Kotsopoulos, noting that when learners are working on quadratic 

functions, the conceptual obstacles that they encounter are: (1) connection between 

algebraic, tabular and graphical representations; (2) a view of graphs as an object; 

and (3) struggle with interpretations of parameters. 

One of the fundamental studies leading to conceptual obstacles about learners’ 

encounters in quadratic functions is by Zaslavsky (1997). Zaslavsky researched the 

conceptual obstacles that hinder learners' understanding of quadratic functions. 

Conceptual obstacles are cognitive and can be explained in terms of mathematical 

structures. In the study, she identified five conceptual obstacles, i.e., interpretation of 

graphical information, the relation between quadratic equation and quadratic function, 

an analogy between linear functions and quadratic functions, change in the form of a 

quadratic function to standard form, vertex form or factored form, and focus on one 

particular coordinate. 

Baki et al. (2010) conducted research and asked learners to find the vertex of the 

quadratic function 𝑓(𝑥) = 2𝑥2 − 12𝑥 − 14 and to draw its graph. It was observed that 

most learners were not familiar with the function in the form 𝑦 = 𝑓(𝑥). As a result, most 

of them could not draw the function; what they drew was a linear function. Moreover, 

Baki et al. found some obstacles, i.e., they did not understand the purpose of the 

problem and felt confused when they used the formula because they were rooted in 

using formulas. They tend to memorise the method of finding solutions. 

The Department of Basic Education issues diagnostic reports on conceptual 

obstacles that Grade 12 learners commit in the final mathematics papers. These 

reports cover quadratic functions, among other mathematics topics. In 2012, DBE 
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reported that learners commonly made mistakes in quadratic functions, where they 

struggled to: (1) substitute the value of “𝑎” into the factored form when determining the 

equation for f(x); (2) to interpret the function and give a correct y-intercept; and (3) to 

find roots. It was suggested that teachers stress the characteristics of parameters a, 

b and c. In 2014, the DBE reported that learners could not recognise the connection 

of quadratics to optimisation. In addition, learners did not notice that the x-intercept of 

the turning point gives the line of symmetry (DBE, 2015). 

The 2020 DBE diagnostic report noted that most learners could not read off the 

coordinates of the turning point from the equation. Instead, they converted from the 

given form to the standard form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then calculated the axis of 

symmetry and the minimum. Some learners gave the 𝑥-intercept of “𝐴 as 5” instead of 

“−5”, while some assumed that A is the 𝑦-intercept. Therefore, these conceptual 

obstacles reviewed from different DBE reports result from teaching and learning 

quadratic functions. Hence, it can be noted that these conceptual obstacles can be 

treated only if teachers and learners strive to develop conceptual learning through the 

contextual teaching of quadratic functions. 

The literature review reveals that the learners have a limited understanding of 

quadratic functions. More specifically, the finding showed that learners’ difficulties 

were divided into three tenets, i.e., failure to understand the mathematical notations, 

the restricted context of activities, and learners' idiosyncratic interpretation of 

mathematical activities. Moreover, the reviewed studies under this section concerning 

learners' understanding of quadratic functions showed some learning problems in four 

categories: (1) quadratic functions depicted by graphs are taken as a picture; (2) 

quadratic functions are viewed as quadratic equations, and not functions; (3) difficulty 

of translation from graphical form to algebraic form; and (4) overemphasising on one 

coordinate of particular points.  

As opposed to Zaslavsky (1997), who used a quantitative approach in his study, 

some studies (Borgen & Manu, 2002; Zazkis et al., 2003; Sajka, 2003) were 

approached more qualitatively by employing learners’ interviews. However, the 

interview techniques in these studies are problematic as the theoretical framework 

does not inform them of their studies. Ginsburg (1981) suggested using a one-to-one 
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unstructured interview to discover learners' cognitive processes, conceptions and 

obstacles. In light of Ginsburg’s recommendations, the present study uses one-to-one 

unstructured interviews to improve learners' understanding of quadratic functions. 

2.8. ACE TEACHING CYCLE IN QUADRATIC FUNCTIONS 

While there is an identity crisis for functions in the mathematics curriculum, teachers 

in the classroom are at the centre of making decisions on what to teach (Denbel, 

2015). As a result, such decisions are complex and demanding and are more difficult 

when the purpose and goal of teaching functions in high school mathematics are 

unclear. Moreover, it is not teachers alone in the struggle on what to do. Instead, 

textbook authors do not present the notion of function in ways that link this concept to 

the rest of the mathematics concepts, thus leaving this to the rest of the teacher 

(Denbel, 2015). The teacher with the South African mathematics approach should 

ensure that learners eventually develop a concept image matching the comprehensive 

definition of a function (Denbel, 2015). This is why some teachers opt for procedural 

natured teaching strategies while interacting with natured conceptual contents. 

Yin (2005) reports on learners' understanding of quadratic inequality conceptual 

obstacle through an in-depth interview. The author stresses that teachers must 

consider their practice. The more teachers think and develop their teaching strategies, 

the more they would be superior with their content delivery (Ball & Cohen, 1999). The 

findings of the study revealed that learners are embedded in procedural knowledge 

without understanding the concepts. Moreover, learners gave quadratic function 

domain procedurally without understanding the concept. Thus, learning quadratic 

functions combines aspects of geometry and algebra, which are crucial for learners' 

understanding. Unfortunately, learners who engage in quadratic functions experience 

barriers in learning the concept.  

The outcry now is on the teacher to opt for teaching methods that nurture 

conceptual understanding of functions. The method that can be adopted is the ACE 

teaching cycle, which demands teachers’ conceptual understanding of the concept. 

Dede and Soybas (2011) studied pre-service teachers concerning quadratic functions.  

The findings were that the pre-service teachers have incorrect conceptions about 

quadratic functions. Also, Bansilal et al. (2014) investigated how teachers with poor 
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mathematical understanding taught conceptual understanding. The results revealed 

that the teachers did not articulate coherent explanations while presenting the 

knowledge of quadratic function. As a result, literature is silent on how the teaching of 

quadratic function should be; thus, this is the contributing factor that teachers tend to 

use procedural understanding anchored pedagogy to teach abstract natured concepts 

(Arnon et al., 2014; Bansilal et al., 2014; Brijlall & Maharaj, 2015). Therefore, learners’ 

possession of procedural understanding is the derivative of pedagogy. For example, 

if the teachers stress using a formula in finding the vertex, learners will forever 

memorise that, and even if the function is in a vertex form, they will use the formula. 

As a result, teachers should always nurture an understanding of mathematical 

concepts. Therefore, they should adopt pedagogies that cultivate learners’ 

understanding. 

Hence, there is a need to explore learners’ conceptual understanding of quadratic 

functions through the ACE teaching cycle. The teaching cycle is a teaching approach 

anchored by APOS theory (Arnon et al., 2014), and is based on three constituents, 

i.e., activities designed to nurture learners’ development of mental structures and 

classroom discussions to allow learners to reflect on the activities they were doing. 

Lastly, exercises outside the class can be homework to consolidate the knowledge 

obtained from items 1 and 2 (Brijlall & Maharaj, 2015). Through the exploration of 

learners’, the growth of conceptual understanding of quadratic function can be 

nurtured using the ACE teaching cycle. 

2.9. SUMMARY OF THE CHAPTER 

In this chapter, the literature reviewed was under the following sub-headings: the 

breakdown of the quadratic function concept, mathematical understanding, and 

mathematical representation of quadratic functions, assessing learners' conceptual 

understanding, learners’ conceptual understanding of quadratic function, conceptual 

obstacles about quadratic function, and contextual teaching of the quadratic function. 

The theoretical framework was also presented, and some of the studies that used the 

APOS theory were discussed as they provided insight into the research methodology 

described in the next chapter. 
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3. CHAPTER THREE: RESEARCH METHODOLOGY 

3.1. INTRODUCTION 

In this chapter, I present the research paradigm choice and the research design. The 

choice of sampling is captured in this chapter. Moreover, I present my role in this study, 

how I collected data, the procedure followed in the study, and how I analysed my data. 

The quality criteria and ethical consideration are captured. Lastly, I present the chapter 

summary. 

3.2. THE CHOICE OF RESEARCH PARADIGM 

Research is a systematic process of gathering and analysing data for improving 

practice (Bogna et al., 2020). Research can use the methodological paradigm of 

qualitative, quantitative, or mixed-method approaches. Quantitative research seeks 

predictions and explanations. Conversely, qualitative research is an approach for 

exploring and understanding the meanings of the individual (Bogna et al., 2020). In 

contrast, the mixed-method approach incorporates quantitative and qualitative 

research designs simultaneously. Therefore, the reported study was located within the 

interpretive qualitative approach. In the context of the study, I explored understanding 

of learners’ thoughts as they interact with mathematics tasks.  

The work of Johnson and Christensen (2004) guide my choice of research 

paradigm. Johnson and Christensen explain that a research paradigm is a perspective 

based on fundamental beliefs, world views, concepts, assumptions, and values. These 

worldviews become a foundation for understanding and interpreting reality (Bogna et 

al., 2020). For the present study, I had to comprehend the assumptions of reality 

through which nature of knowledge is developed in the processes of learning. Such 

knowledge becomes learners’ knowledge, serving as a lens for their mathematical 

reasoning (Arnon et al., 2014).  

Researchers adopt different paradigms, such as positivism, constructivism, 

pragmatism and transformative (Guba & Lincoln, 1994). I adopted the constructivism 

paradigm. Constructivism asserts that people (learners) construct their understanding 

and knowledge by experiencing and reflecting upon those things (Honebein, 1996). 

Although knowledge construction in this paradigm is attributed to interaction, Steffe 
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and Thompson (2000) hold that one should not perceive the teacher as the giver of 

knowledge; instead, the teacher’s role is to mediate mathematical activities. 

I hold that the constructivist paradigm asserts the role of interactions as a tool for 

developing knowledge in a mathematics class. Therefore, it is within the heart of this 

paradigm that I derive the purpose of the study. Contrary to other world views, such 

as positivism, which holds that explanations are used to predict and control 

phenomena, I was concerned with re-learning and reconstructing prior knowledge of 

quadratic functions. Hence, this continuous process was done to permit new 

interpretations and constructions of quadratic functions knowledge. Therefore, 

knowledge within the frames of the constructivist is not passively received but actively 

developed (Kusuma et al., 2021). Constructivism embraces learners’ prior knowledge 

of quadratic functions from the previous Grades. Learners bring prior constructions of 

quadratic functions into the mathematics classroom to their learning space through 

their interaction with others.  

In contrast to the positivist paradigm, which uses scientific methods and statistical 

procedures to report data, constructivism uses methods that stimulate understanding 

of the phenomena under exploration (Kusuma et al., 2021). Additionally, analysis is 

done through content analysis. Hence, I did not pursue to generalise the findings to a 

group but understand how learners' understanding of quadratic is within the tenets of 

the APOS theory through the implementation of the ACE teaching cycle. 

3.3. RESEARCH DESIGN 

Creswell and Poth (2016) define research design as the whole process of research, 

from conceptualising the problem to writing the report. Moreover, a research design 

determines the following in a qualitative study, i.e., participants, data collection 

methods, and data analysis procedure (Merriam & Tisdell, 2015). As such, I adopted 

an exploratory qualitative case study. A case study is a complete portrayal and 

investigation of a bounded phenomenon (Merriam, 1998). As suggested by Merriam, 

the boundaries of the study were Grade 12 learners’ conceptual understanding of 

quadratic functions concepts, that is, an axis of symmetry, vertex, the location of roots, 

whether the graph opens up or down, the maximum or minimum point of the graph, 
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the 𝑦-intercept, and the transformations through the ACE teaching cycle. The structure 

of the methodology is explained below and shown in Figure 3.1.  

 

Figure 3.1: The relationship between the ACE cycle and Genetic decomposition 

Firstly, I developed a genetic decomposition, that is the APOS theoretical analysis 

for learning quadratic functions. Secondly, I implemented an ACE teaching cycle in 

class. During the ACE teaching cycle, I started with the activities phase, followed by 

the classroom discussions phase. The activities phase was designed to check 

learners' knowledge of the quadratic function concept, and the class discussions 

phase was done after interacting with the activities phase. Thirdly, I implemented the 

exercises phase of the ACE teaching cycle, which was designed to reinforce the 

activities and classroom discussion phase. 

3.4. SAMPLING 

Merriam (1998) suggests that sampling should occur before data collection. Purposive 

sampling is a sampling tied to a specific objective, meaning that one perceives 

sampling as a sequence of strategies (Campbell et al., 2020). Therefore, I employed 

purposive sampling as a sampling technique to sample 30 participants. These 

participants were sampled because of their performance on mathematics from Grade 

11 results. All these were exposed to the ACE teaching cycle for two weeks, where 

their Annual teaching Plan (ATP) was not affected with the process as we met after 

the normal time for teaching and learning. By so doing, none of the learners was 

disadvantaged by selection bias. All the participants were identified as data sources.  
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The manner of choosing the participants is aligned with the sampling method 

employed. The power of purpose sampling is to select a few grain-sized participants 

that are studied to yield more insights into the topic (Campbell et al., 2020). The study 

was bounded by time and location, with the results only about these sampled learners. 

Hence, the participants were intentionally drawn from my class to minimise outside 

mathematical influence. As a result, there are no other assumptions about other 

learners except the participants of the study. The data collection was for two weeks 

except on weekends, and we met for 50 minutes each day. 

I obtained ethical clearance from the research office at the University of Limpopo. 

Then I submitted a request to conduct the study to the research office of the province, 

i.e., the Limpopo Department of Education (see Appendix A). Lastly, I sent a request 

to the school's principal, i.e., the research site (see Appendix C). I received permission 

to conduct the study from the Limpopo Department of Education (see Appendix G). 

Learners gave consent to participate in the study (see Appendix B), and the principal 

and SGB of the school were notified (see Appendix C). To maintain confidentiality, the 

learners self-selected pseudonyms using letters of the alphabet. For example, 

“Learner A.”  Although I did not foresee any reason a learner might wish to withdraw 

from the study, there was a protocol for this. All the participants had the right to 

withdraw from the study without penalty. As such, if a participant wanted to withdraw 

from the study, any previous data collected from the participant would still be used for 

the research. Luckily, none of the participants withdrew from the study.  

3.5. MY ROLE IN THIS STUDY 

The study participants interacted with a task that was non-directive since I adopted a 

constructivist approach. This meant that I was not giving them answers or funnelling 

them to my procedures. Therefore, I was in the classroom and did not funnel their 

responses as they interacted with the learning tasks. The content was delivered 

through a mathematics learning unit (see Appendix D). A learning activity is a unit 

designed by the teacher to bring about and create an atmosphere for learning in the 

mathematics classroom. My presence in class during the interaction with the learning 

unit was to keep learners on task and to scaffold them if they hit a snag. During the 

learners' interaction with the learning activities, I watched and looked for the “aha!” 
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moments to gain more insight into their understanding of quadratic functions. To 

ensure validity, I developed a research protocol (see Appendix H) to assist me when 

interacting with the learners in the classroom. 

3.6. THE LEARNING ACTIVITIES  

I developed the learning activities using the CAPS document and assessment 

guidelines following Bloom’s taxonomy, which is a hierarchical learning method. The 

rationale behind it was that learning at higher levels depends on having attained the 

knowledge at the lower levels (Web, 2020). I divided the learning unit into three 

sections, i.e., quadratic functions and parabolas, sketching parabolas and 

transformation involving quadratic functions. Each section presented in the learning 

unit was guided by the constructivism theory of learning, which should present the 

learner as an instrument to guide them in understanding the section. I prepared a pre-

test and post-test in the learning unit to gain more insight. 

3.7. DATA COLLECTION 

With the implementation of the ACE teaching cycle, I collected qualitative data. 

Creswell and Poth (2016) assert that researchers often consider observational data 

when considering qualitative data. Merriam (1998) broadens data collection methods 

by focusing more on collecting data as determined by the researcher’s paradigm, 

purpose, and the research design adopted. For this purpose, I collected qualitative 

data through the constructs of the ACE i.e., activities (learning task), classroom 

discussions, unstructured interviews and exercises (test). 

3.7.1. Activities 

The activities phase was the first tenet to be applied, involving writing learning tasks 

on the quadratic functions. During this stage, Task 0 was administered, which 

assessed learners’ prior knowledge, and thereafter, learners worked on learning tasks. 

For the learning task and Task 0, I complied with the CAPS document and previous 

question papers. These activities took place in the class where learners were working 

individually and in groups. The period was 50 minutes, and learners did not receive 
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any assistance from the teacher. They started by working individually when they wrote 

Task 0 and in groups when interacting with the learning tasks. 

3.7.2. Classroom discussions 

The classroom discussions phase followed the activities phase. Here learners had an 

opportunity to express their ideas and understandings of the learning tasks. They 

engaged in concepts that posed conceptual obstacles on quadratic functions. 

Additionally, I purposefully recorded two participants for learner-learner and learner-

teacher discussions. The learners' discussion was sampled due to their inability to 

justify incorrect responses to the activity (Campbell et al., 2020). The classroom 

discussion was recorded in the classroom during their interactions. 

3.7.3. Exercises 

The exercise phase of the cycle reinforced the previous activities and classroom 

discussion phases. Learners continued to build their ideas and understanding of the 

concept of the quadratic function. A test compromised the exercise phase and 

assessed their level of understanding of quadratic functions.  

The constructs of the ACE teaching cycle served as a tool for collecting data. 

Therefore, the ACE teaching cycle was guided by the APOS theory. The data 

collection was as follows, i.e., development of the genetic decomposition, 

implementation of the ACE cycle, and collection of qualitative data from activities, 

classroom discussions and exercises. Therefore, I employed the constructs of the 

ACE teaching cycle to collect qualitative data to respond to the research question, i.e., 

“How does the ACE teaching cycle improve learners’ conceptual understanding of 

quadratic functions?” 

3.8. RESEARCH PROCEDURE 

The learners participated in the study for two weeks, and none was absent nor 

withdrew from the study. Each session lasted 50 minutes per day. Firstly, learners 

wrote Task 0, and the scripts were collected. Secondly, they were given learning tasks 

to work with. The learning unit had three sections to be attended to. Although I was 

present during the overall research process, my presence was to keep them on task 
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and to encourage them to work on the activities continually. There was a protocol to 

follow, so I could not compromise the results. I did not assist them unless they hit a 

snag, and I only had to probe and scaffold. The research procedure is depicted 

diagrammatically in the model below (see Figure 3.2).  

 

Figure 3.2: Research procedure 
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3.9. DATA ANALYSIS 

Data analysis reduces gathered information interpretations and summarisation to get 

the meaning of the data (Bikner-Ahsbahs et al., 2015). Therefore, I analysed the 

collected data using content analysis. Content analysis is an analysis method for 

interpreting textual data through organisation process codes and themes (Hsieh & 

Shannon, 2005), and can be used in a deductive or inductive way; thus, I employed 

the deductive method in my analysis process.  

The deductive analysis is applied when the structure of analysis operates based 

on prior knowledge, and the purpose is theory testing (Elo & Kyngas, 2008). In this 

case, I explore learners’ conceptual understanding through the levels of the APOS 

theory and viewed learning knowledge through genetic decomposition. All this was 

done to improve Grade 12 learners’ conceptual understanding of quadratic functions. 

Deductively, the tenets of the theory were used to determine learners' level of 

conceptual understanding. Content analysis is divided into three phases, i.e., 

preparation, organising and reporting. 

During the preparation phase, I reviewed the data to allow new insights to emerge. 

I read all data gathered repeatedly to obtain a sense of the whole. I separated data 

from the activities, classroom discussions, and exercises during this phase. Next, from 

the analytic process, I strove to make sense of the data, learn what is going on, and 

understand the whole. During the process, the tenets of the APOS theory using 

genetic decomposition were used to locate the data in each tenet. 

After making sense of the data, I started to group them. Since the purpose of the 

reported study was to improve learners' understanding of quadratic functions, 

therefore the existing constructs of the APOS theory, namely action, process, object, 

and scheme, were re-tested in this context to illustrate learners’ levels of 

understanding. Lastly, the collected data were reviewed for content and themes that 

emerged from the data. Furthermore, a report was written on the themes, deciding the 

level of learners’ understanding of quadratic functions based on the APOS theory. 
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3.10. QUALITY CRITERIA 

In ensuring quality criteria, I adhered to issues of rigor and trustworthiness. Guba 

(1981) asserts that for the verification of qualitative data, the researcher must respond 

to the four proposed trustworthiness concerns: transferability, conformability, 

credibility and dependability. Therefore, the confirmation of data in my study referred 

to the scrutiny of these concerns.  

Bryman et al. (2008) assert that credibility ensures that the study results are 

accurate. In qualitative research, credibility depends more on the wealth of the 

information gathered. To ensure the credibility of the study, I have three tenets to 

collect data: activities, classroom discussions and exercises. Therefore, all this was 

done to foster triangulation of data. Triangulation means collecting and analysing 

datasets from more than one source to understand more about the studied case. 

Transferability refers to how the research findings can be applied to other 

situations (Bryman et al., 2008). To apply transferability in a qualitative study, I used it 

with caution. This implies that I transferred the findings to another context with caution 

to the sampling and the purpose of the study in mind. Furthermore, the study was not 

meant to generalise its findings. Hence, the criterion of transferability is relevant for a 

qualitative study if the research intends not to generalise.  

Bryman et al. (2008) define dependability as the ability to verify that the findings of 

the study are consistent and can be repeated if the same data collection method is 

used. Therefore, dependability was maintained in this study, and the learners’ written 

responses to the activities were collected. Moreover, the scripts served as valid proof 

of their understanding of quadratic functions. The scripts illustrated what learners can 

and cannot do. According to Creswell and Poth (2016), conformability deals with the 

level at which the research findings are supported by the data gathered and are free 

from bias. To ensure conformability, I was not biased towards the collected dataset. I 

achieved conformability by not tempering with the data by choosing what I preferred 

and excluding others. Additionally, the findings are synthesised directly from the data 

by providing rich quotes from participants. 



 

65 

 

3.11. ETHICAL CONSIDERATIONS 

Creswell and Poth (2016) assert that researchers have a task to adhere to the 

participants' rights, values, desires, and needs to ensure that the reported study is 

ethically conducted. Ethics establish boundaries that the study should not harm the 

participants. Qualitative research is conducted in a practical setting that allows the 

participation of individuals. Thus, Batchelor and Briggs (1994) reported that research 

involving people's participation needs awareness of ethics. For my study to be ethical, 

I addressed the following dimensions: informed consent, anonymity and 

confidentiality, human dignity, privacy, and responsibility to avoid harm in pursuit of 

ethical considerations. 

3.11.1. Informed consent 

The most effective way to address the informed consent issue is through an 

information sheet given to all stakeholders invited to participate in the research 

(Bulmer, 1982). The faculty gave me approval to proceed with the study (see Appendix 

I). Additionally, to adhere to informed consent, I wrote a letter to Limpopo Department 

of Education (see Appendix A) and to the principal of the school where the study took 

place (see Appendix C). I did this to seek permission and to alert all relevant 

stakeholders about the research project. Additionally, I sought permission from 

parents for their children to participate in this study as they are minors. The parents 

were also furnished with a letter that included the purpose of the study, the 

authorisation of the research by the University of Limpopo, the ethical clearance 

certificate (see Appendix F), and the period of participation in the study. I ensured that 

the study did not disturb the academic process but improved it. The Limpopo 

Department of Education permitted me to conduct the study (see Appendix G). 

3.11.2. Anonymity and confidentiality 

Orb et al. (2001) assert that any research should adhere to the opinion of respect and 

justice. Anonymity requires that you do not know who the participants of the study are, 

especially their original names. I ensured that the participants remained anonymous 

and had free will to participate in the research by filling in a consent form (see Appendix 

B). Hence, I maintained confidentiality and the protection of all. The school’s name, 
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the teacher, and the learners were kept anonymous to maintain confidentiality. 

Therefore, for the school’s name, I used “XXXXXXX” high school, for the teacher, I 

used “T-Math,” and for the learners, I referred to them as, for example, “learner P20.” 

Moreover, I did not expose the participants to unusual circumstances since it was 

conducted in a school environment. Hence, their answers were kept confidential at all 

costs. 

3.11.3. Human dignity 

Research should adhere to human dignity. Human dignity is intricately linked to 

individual inviolability. In research ethics, human dignity implies that individuals have 

interests and integrity which cannot be set aside in research to achieve a deeper 

understanding of the study (Orb et al., 2001). I protected personal integrity and 

preserved freedom and self-determination to protect human dignity. Thus, the choice 

of topic for the study was suitable for the participants, and not to expect any harm 

when results were reported. 

3.11.4. Privacy 

Research must be conducted following considerations for data protection of the 

concerned participants (Creswell & Poth, 2016). Therefore, privacy in the context of 

the study was narrowed to the two dimensions of privacy: when individuals have 

impaired or absent capacity to protect their own needs and interests; and when 

individuals actively contribute to acquiring data for research, for example, by agreeing 

to be observed or interviewed. Privacy in the study was applied with caution and 

responsibility, as I maintained that the data is kept in a safe and no one is allowed to 

access that data. 

3.11.5. Responsibility for avoiding harm 

Researchers are responsible for ensuring that participants are not exposed to serious 

physical harm or severe or unreasonable strain due to the research (Creswell & Poth, 

2016). In a qualitative study, there is usually insignificant risk of participants being 

exposed to severe physical harm. However, serious mental strain is a possibility. This 

may be more difficult to define and predict, and it can be challenging to assess the 

long-term effects, if any. Therefore, the participants in the study did not experience 
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any form of harm due to the activities not being harmful but beneficial. Their answers 

were not used to embarrass them; instead, they were used to respond to the research 

questions posed above. 

3.12. SUMMARY OF THE CHAPTER 

In this chapter, I outlined the rationale for the research paradigm. An account for 

choosing a case study design was provided. The sampling of participants of the study 

was also outlined. Data collection methods, data analysis procedure, ethical 

consideration, and quality criteria were also addressed. The next chapter focuses on 

the analysis of the collected data. 
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4. CHAPTER FOUR: PRESENTATION AND 

DISCUSSION OF FINDINGS 

4.1. INTRODUCTION  

In this chapter, I presented qualitative data analysis observed during the ACE teaching 

cycle in the classroom. The qualitative data sought to explore learners' conceptual 

understanding of quadratic functions using genetic decomposition. To thoroughly 

explore this conceptual understanding of quadratic functions, I employed a cyclic 

process (see Figure 4.1) guided by genetic decomposition. The genetic decomposition 

informed each phase of the ACE cycle, as seen in Figure 4.1. During all these phases, 

the genetic decomposition functioned as a lens through which it hypothesised that 

learners engaged in a learning task would undergo a specific indicator route to 

understand that concept. 

 

Figure 4.1: The cyclic process of data analysis 

Chapter four is arranged in line with Figure 4.1 as dictated by the APOS theory 

(Arnon et al., 2014). Şefik et al. (2021) hold that a theory must reveal what can be 

done to improve learning. Thus, to achieve this, the theory must allow four things to 

occur in learners' construction of knowledge, i.e., prior knowledge, actual 

development, potential development, and scaffolding to attain understanding (Van Der 

Stuyf, 2002). Thus, for the APOS to meet these elements required for understanding 

suggests three processes to be considered, i.e., activities, classroom discussion, and 

exercises (Arnon et al., 2014). This process continues until understanding is achieved 
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through the attainment of indicators in the genetic decomposition. The precedent 

genetic decomposition of the quadratic function concept in Figure 4.2 predicts how the 

concept was learned in the classroom, as seen in Figure 4.1.  Trigueros and Possani 

(2013) noted that a genetic decomposition should prevail in how concepts are learned 

in classrooms. Therefore, the genetic decomposition was used for two things in this 

study (1) as a lens to view learners' conceptual understanding of the quadratic 

function, and (2) as a tool used to dictate the learning of quadratic functions.  



 

70 

 

 

Figure 4.2: Genetic decomposition for quadratic functions 
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The use of genetic decomposition as a lens is anchored on the work of Arnon et 

al. (2014). The genetic decomposition was used as a lens to explicitly explain how the 

attainment of each tenet could be achieved (Arnon et al., 2014). It provides a synopsis 

of how learners' interaction with the learning task can develop mental structures in 

their minds. As a result, I have detailed the indicators for attaining the action, process, 

object and schema. The indicators are numbered; for example, action indicators are 

1.1-1.6. The indicators in the process level are numbered from 2.1-2.10, and those in 

the object are numbered from 3.1-3.4. Therefore, the attainment of 1.1-1.6, 2.1-2.10 

and 3.1-3.4 constitute a schema level of understanding. 

To begin chapter four, I divided it into three sections to thoroughly explore learners' 

understanding of quadratic functions. Firstly, I simultaneously analysed and discussed 

the qualitative data by unpacking three tenets of the quadratic function through the 

activities, classroom discussions and exercises. Secondly, the analysis and 

discussions are synthesised, giving the principal findings of the study. Lastly, I 

presented the chapter summary.  

4.2. DATA ANALYSIS AND DISCUSSION 

In this section, I simultaneously analysed and discussed data from activities, 

classroom discussions and exercises. I started by exploring learners' prior knowledge 

of quadratic functions in the activities phase. I used a task (Task 0) to assess learners' 

prior knowledge of quadratic functions, which was compiled in line with the precedent 

genetic decomposition. As put by Şefik et al. (2021), the genetic decomposition depicts 

how the concept should be learned. Therefore, the precedent genetic decomposition 

depicted how quadratic functions should be learned for conceptual understanding.  

Moreover, the data collected from Task 0 paved the way for additional data collection 

in the activities phase. As such, the other data in the activities phase was collected 

using the learning unit, which had a learning task that covered the following aspects 

of quadratic functions, i.e., the forms of quadratics, the shape of the graph, the 

intercepts, sketching the function, translation, reflections, and dilations.  

The data collected from the activities phase informed the classroom discussions 

phase. In this phase, I present the transcribed classroom discussions and the interview 

session. Lastly, I present a reflection on the impact of the ACE teaching cycle on 
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learners' conceptual understanding of quadratic functions, looking through the 

exercises. In this phase, I wanted to reinforce the activities and classroom discussions. 

During the exercise phase, learners wrote an exercise (Test) which assessed the most 

challenging concepts in quadratic functions identified from the activities and classroom 

discussions. The analysed and discussed data from the activities, classroom 

discussions, and exercises were synthesised to profile learners' conceptual 

understanding based on the genetic decomposition, related literature on quadratic 

functions, and the literature on understanding. Therefore, the concept of conceptual 

understanding and conceptual knowledge will be interchangeable, as they mean the 

same (Star, 2005). 

4.2.1. Activities phase 

In this section, I presented the learners' conceptual understanding across the activities 

phase. To thoroughly explore their conceptual understanding of quadratic functions, 

learners were given Task 0 to write. This assessed their prior understanding of 

quadratic functions. The task assessed three concepts of a quadratic function: 

intercept, transformation, and graph orientation. The data from Task 0 informed the 

exploration of learners' conceptual understanding during the learning tasks. Thus, for 

me to be able to explore their conceptual understanding of these concepts thoroughly, 

I had to mark all tasks that the learners wrote. Thus, marking the tasks gives a 

synopsis of conceptual understanding as an answer can be correctly or incorrectly 

marked. Yet still, that answer requires analysis to determine its level of understanding 

according to the precedent genetic decomposition (Figure 4.2). 

4.2.1.1. Learners' prior understanding of quadratic functions (Task 0) 

I compiled an activity that assessed learners' prior knowledge of quadratic functions 

using previous question papers, CAPS document, the assessment guidelines 

pertaining to Grade 12 for mathematics and the precedent genetic decomposition. 

Prior knowledge is vital in a mathematics classroom, as it is a collective knowledge of 

the learner when entering a learning environment (Akinsola & Odeyemi, 2014). In this 

study, this collective knowledge is referred to as the conceptual knowledge of 

equations and functions done in earlier grades. Thus, prior knowledge influences 

learners' interaction with latest content (Akinsola & Odeyemi, 2014). Therefore, to 
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achieve this expected result of prior knowledge being able to influence the present 

content, the knowledge should be assessed at the start of instruction. This is so 

because prior knowledge sets out the actual development of learners and gives the 

teacher an idea of what to do to improve their potential development (Yildiz & Celik, 

2020).  

Consequently, I assessed learners' prior knowledge of quadratic functions in this 

study. Task 0 (see Table 4.1) had three questions to explore learners' understanding, 

which served as an introductory activity to this discourse. The task opined to nurture 

the actual development of learners. The questions of Task 0 demanded that learners 

tap into their prior knowledge of quadratic functions. For example, the first one requires 

them to demonstrate their conceptual understanding of intercepts. Bansilal et al. 

(2014) noted that conceptual understanding intercepts is considered a smaller 

algorithm but nurtures the overall schema of quadratic functions when encapsulated 

into action, process, and object. Therefore, it is from conceptual understanding 

intercepts that learners can interact with graph orientation and transformations 

(Bansilal et al., 2014). In a related study by Emmanuel (2012), it was found that 

learners posed conceptual obstacles as they failed to note the distinction between 𝑦 =

𝑎𝑥2 + 𝑏𝑥 + 3 and 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 7. The researcher concluded that this seems to 

result from learners' failure to make connections between the symbolic to graphical. 

Consequently, this transition requires a conceptual understanding of intercepts. 

Table 4.1: Learners prior understanding of quadratic functions 

Task 0 

1. Determine the 𝑦-intercept for the following equation: 𝑦 = −3(𝑥 − 4)2 + 100 

2. Clearly explain in words all the transformations that must be applied to 𝑦 = 𝑥2 to obtain the graph 

of the function below 𝑦 = −
1

4
(𝑥 + 6)2 + 12 

3. Sketch each quadratic function and fill in the blanks below: 

3.1. 𝑦 = (𝑥 − 2)2 + 3 

Vertex; Axis of symmetry; 𝑥-intercepts; 𝑦-intercept 

3.2. 𝑦 = −(𝑥 + 5)2 − 2 

Vertex; Axis of symmetry; Max/Min value; Range 

3.3. 𝑦 = 0,5(𝑥 − 4)2 + 5 

Vertex; Axis of symmetry; Step pattern; Domain 
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Task 0 was written by all the learners and marked on a 24-point scale, allowing 

me to determine average marks on each question. Conversely, Pirie’s (1988) view of 

understanding where learners are not categorized, I employed a different view as I 

categorises conceptual understanding based on four tenets. Therefore, I employed 

Dubinsky’s (2002) assertion that understanding can be categorised into action, 

process, object, and schema. Consequently, I had to assign marks to obtain per 

question for each learner for me to thoroughly delve into their solution through the lens 

of genetic decomposition to categorise their conceptual understanding of quadratic 

functions. The average marks are shown in Table 4.2 for all the learners. The Table 

depicts the class average marks obtained per question. The marks give a snapshot of 

learners' conceptual understanding of each assessed concept. 

Table 4.2: Learners' average marks on Task 0 

Concept Total marks Class average 

Intercept 3 1,7 

Transformations 3 0,1 

Graph orientations 3 0,4 

The Table above reveals concepts that learners grappled with the most to grasp 

their conceptual understanding entirely. From the Table above, learners’ prior 

knowledge of quadratic functions posed challenges in understanding the 𝑦-intercept, 

transformation, and graph orientation. Learners have a fragmented understanding of 

the 𝑦-intercept and graph orientation as most scored average marks of two and eight, 

respectively. Hattikudur et al. (2012) observed that conceptual obstacles differed in 

context when dealing with functions. In their study, they explore learners’ conceptual 

understanding of the 𝑦-intercept. Hattikudur et al. found that learners posed 

fragmented knowledge of the 𝑦-intercepts. In contrast to conceptual understanding 

intercept and graph orientation, the concept of transformations posed severe 

difficulties to learners, as most scored an average of less than one. 

The concept of transformation impedes learners' conceptual understanding of 

quadratic functions. As Zazkis et al. (2003) noted, transformations exhibit severe 

conceptual obstacle among learners. The researchers asserted that the conceptual 

obstacles result from transformation being abstract and requiring representations to 
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understand. The ideas found while navigating literature are in cooperation with the 

average class marks. Consequently, the class average marks from Task 0 give a 

synopsis of learners' prior understanding of quadratic functions. Therefore, the class 

average marks are used to grade knowledge of these concepts as conceptual 

understanding according to the APOS theory can be evaluated. The evaluation of 

conceptual understanding is anchored by literature (Arnon et al., 2014; Childers & 

Vidakovic, 2014; Groves, 2012; Hiebert & Lefevre, 1986; Kilpatrick et al., 2002; Rittle-

Johnson, 2017; Skemp, 1976).  

Therefore, delving deeper into the synopsis, I began exploring learners' conceptual 

understanding of the first question of Task 0, which assessed their conceptual 

understanding of the intercepts. The learners' conceptual understanding of intercepts 

is vital in quadratic functions as knowledge mitigates misconceived knowledge found 

by Parent (2015), who asserted that learners often confused the 𝑦-intercept of the 

graph and the turning point. In a related study, Ubah, and Bansilal (2018) studied the 

understanding of quadratic functions. In their study, the researchers conform to 

Parent’s findings by stipulating that the learners' failure to note the distinction between 

the parameters impedes the full attainment of the concept. Learners in the first 

question were given a function in the vertex form, i.e., 𝑦 = −3(𝑥 − 4)2 + 100, and were 

required to determine the 𝑦-intercept. This question of determining intercepts needed 

them to let the value of 𝑥 be zero, i.e., 𝑥 = 0. Then after having this notion, they would 

substitute the value of 𝑥 into the function and have the value of 𝑦. However, learners 

would be required to conclude their solution and acknowledge that they are 

determining intercept and not solving for 𝑦. This will imply that they would give the 

coordinate of the 𝑦-intercept. This process nurtures the conceptual understanding of 

quadratic functions as learners note the difference between equations and functions 

(Aziz et al., 2018). Therefore, the question requires a learner to conduct procedures 

flexibly (Kilpatrick et al., 2002), as a he or she was not opined to use a specific method 

to determine the 𝑦-intercept. The expected solution to the question is shown in Table 

4.3. 
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Table 4.3: Expected solution of conceptual understanding the y-intercept 

𝑦 = −3(𝑥 − 4)2 + 100  

𝑙𝑒𝑡 𝑥 = 0  

Sub 𝑥 = 0 into 𝑦 = −3(𝑥 − 4)2 + 100  

𝑦 = −3(0 − 4)2 + 100  

𝑦 = −3(−4)2 + 100  

𝑦 = 52  

∴ 𝑦-intercept (0; 52) 

Indicator 1.2 (1.1, 1.6) 

Indicator 1.2.1 

Indicator 1.2.2 

Indicator 1.2.3 

 

 

Indicator 1.2.4 

The question demanded that learners understand that they should use their prior 

understanding of equations but acknowledge that they are determining intercepts and 

not solving for 𝑦. The learners' understanding of functions and equations is vital for 

developing conceptual understanding (Li, 2010). The question stressed the first tenet 

of genetic decomposition, i.e., quadratic functions and parabolas. The learners' 

attainment of this question would mean that they should display the following 

indicators, i.e., 1.1 knowing the forms, 1.2 determining the 𝑦-intercept, and 1.6 can 

read critical values from the function and graphs (see Figure 4.2). Therefore, the 

attainment of this tenet would nurture their conceptual understanding of intercepts. 

Hattikudur et al. (2012) noted that intercepts served as a ladder to fully understanding 

functions since the concept cuts across all functions in mathematics. However, 

learners grappled with the conceptual understanding of intercepts. Struggling learners 

included learners C5, F10, Q21 and U25. I have presented their understanding of the 

𝑦-intercept in Figure 4.3. 
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Learner C5 Learner F10 

  

Learner Q21 Learner U25 

  

Figure 4.3: Learners' incorrect conception of the y-intercept 

Learners interacted with the question of intercept, and from there, four solutions 

learners were sampled. These are the ones who posed serious conceptual obstacles 

in this question of the intercept. Although most of them scored zero on the question, 

this does not mean that they do not have any sort of understanding of intercepts. As 

put by Nickerson (1985), the non-binary nature of understanding, i.e., if learners have 

interacted with quadratic functions means that they will have limited links within their 

conceptual understanding. Therefore, this non-binary nature demands the learners to 

understand that they might score zero, but their links for conceptual understanding 

vary. For example, learner U25 wrote that the 𝑦-intercept is 100 without taking into 

consideration the form of the function (Figure 4.3). The learner failed to efficiently 

portray indicator 1.1, i.e., understanding the forms of quadratic functions. He or she 

did not consider that the function was not in standard form. This notion made the 

learner write that 𝑦 = 100 without interrogating what 100, subsequently this thought 

inhibited the conceptual understanding of parameters and the forms of quadratic 

functions. This type of misconceived idea is like learner C5’s solution.  

Delving deeper into these learners' solutions based on Sierpinska's (1994) 

definition of understanding, I can say that these learners' acts of understanding are 

fragmented since they failed to provide enough links to the quadratic forms, which 
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inhibited the attainment of indicator 1.1. However, comparing the two learners, C5’s 

level of conceptual understanding differs from U25's. In learner C5 solution, the learner 

failed to note that the question nurtured indicator 1.2 of understanding. The question 

required learners to tap into their prior knowledge of determining 𝑦-intercept. Instead, 

learner C5 applied indicator 1.3, i.e., determining the 𝑥-intercepts, which posed 

conceptual obstacles of comprehending the question. For example, learner C5 started 

by writing that “let 𝑦 = 0” and thereafter the participant cancelled it. Learner C5 started 

all over again by writing “let 𝑥 =0” but did not substitute it into the function. This was 

explained by Díaz et al. (2020), that learners have an instrumental understanding but 

often failed to use it when required. Similarly, learner C5 seems to have an 

instrumental understanding of determining the intercept but is underdeveloped.  

Consequently, the conceptual obstacle posited by C5 seems to be inhibited by an 

underdeveloped conceptual understanding of quadratic forms and parameters. The 

conceptual obstacles posed was also noted by Parent (2015), as learners consistently 

used one form due to a lack of understanding of the other forms. However, learners 

C5 and U25 viewed the function as a standard which explains the reason for them 

equating the 𝑦-intercept to be 𝑞 = 100. This thought is guided by the fact that learners 

thought “𝑞 = 𝑐.” Thus, failure to understand the forms of quadratic functions inhibits 

the attainment of indicators 1.1, 1.2 and 1.6. According to precedent genetic 

decomposition, the two learners posed various limited action conceptions of the forms 

of quadratic functions. They neglected the importance of parameters, which inhibits 

the development of the whole action level of conceptual understanding, which impedes 

the process and object level of conceptual understanding. The fragmented knowledge 

of forms and parameters hinders the development of a coherent understanding 

network. As noted by Nielsen (2015), learners found it easy to work with the standard 

form ‘𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐’ than the vertex form ‘𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞, when engaged 

in quadratic functions questions. Nielsen’s view is replicated in this study, as these 

learners thought that the quadratic functions were in a standard form. Thus, the 

learners might have gotten the correct answer if the functions were in standard form. 

This notion is guided by the view that these learners thought 𝑐 = 𝑞, meaning that they 

possess some understanding of the parameter 𝑐, but it is muddled with parameter 𝑞. 
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In addition, from the first question of Task 0, I explored learner Q21’s conceptual 

understanding of the 𝑦-intercept (see Figure 4.3). Exploring learner Q21’s conceptual 

understanding of 𝑦-intercept, the learner's first step portrayed indicator 1.2.1, which 

was a good start, showing that the learner understood the question, unlike learner 

F10, who wrote 𝑦 = 0 exhibiting 1.3 indicators and then stopped writing. Learner F10 

demonstrated that they do not have a 1.2 indicator of understanding as she was 

confused and tapped into incorrect indicators of understanding. However, the two 

learners' understanding of their first steps indicated that learners Q21 and F10 have 

various levels of conceptual understanding regarding the intercept. Learner F10 failed 

to differentiate the method used to determine the 𝑦-intercept and 𝑥-intercepts. As such, 

this led to learner F10’s understanding of 𝑦-intercept to be underdeveloped as the 

learner posed fragmented knowledge of intercept. Putri (2021) denoted this as 

instrumental understanding: learners usually use procedures without fully 

understanding them. Putri’s type of understanding was clear from learner F10’s 

solution, as she tapped into indicator 1.3 instead of 1.2.  

Unlike the fragmented instrumental understanding of intercept posed by learner 

F10, learner Q21 showed some bits of understanding. Therefore, the excellent start of 

learner Q21 of the question implied that the learner held a complete instrumental 

understanding of the determining intercepts as he achieved indicators 1.2.1 and 1.2.2 

and failed to attain the 1.2.3 indicator. While interacting with learner Q21’s solution, I 

noted that the learner ignored exponent 2 as she progressed with her workings. 

However, Hiebert and Carpenter (1994) would have acknowledged the conceptual 

obstacles and said that this learner is posing some understanding but not to the extent. 

Thus, if the learner posed understanding to the extent, it would have meant that the 

participant managed to correctly substitute zero into the function and obtain the 𝑦-

intercept as (0; 88). However, delving deeper into learner Q21, the participant’s 

operational understanding of the function after zero substitution is underdeveloped. 

As seen from the work of Cangelosi et al. (2013), learners often have an undeveloped 

understanding of additive and multiplicative inverse. This notion was replicated in the 

work of learner Q21, as the participants failed to distribute the operators correctly. 

Consequently, the ignorance of such algebraic operational skills inhibits complete 

understanding of the determining intercepts, i.e., attaining a complete indicator of 1.2. 
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As pointed out by Kotsopoulos (2007), that learners would perform instrumental 

procedures without having a relational part while determining intercepts. The view of 

Kotsopoulos is immature when analysed by the ideas of Hiebert and Carpenter (1994). 

In their ideas of understanding, the two researchers are not disputing conceptual 

obstacles but acknowledging that they form a profile for the learner. Therefore, the 

conceptual obstacle posed by these learners would place learner Q21 at a higher 

order level of understanding intercepts even if the solution is incorrect, according to 

Hiebert and Carpenter. 

Moreover, learner Q21 posed challenges in multiplying the negative signs. This 

results in hampering the development of the process conception due to failure to 

simplify correctly after correctly substituting into the function the value of 𝑥. Learner 

Q21 did not check and verify their solution whether the value that she got was correct 

or not. Her solution clearly showed that she struggled with working with additive and 

multiplicative inverses. The conceptual obstacle in correctly applying the operators 

was also observed in Booth et al. (2014). The researchers found that participants could 

not correctly simplify expressions in quadratic, especially when working with negative 

terms. A related study by Cangelosi et al. (2013) found that learners posed 

computational incompetency with operations. For example, the participants viewed 

−22 as (−2)2. They thought that −22 and (−2)2 are the same. Thus, these findings 

were replicated in this study as learner Q21 thought that (−4)2 is equal to −4. What 

is fascinating about the learner’s solution is the definitive answer which is −148 from 

her method. This solution emanates from pitfalls in arithmetic, which forms the basis 

for understanding quadratic functions. The pitfalls identified from this question are 

unclear understanding of parameters, overreliance on one form of the function, lack of 

arithmetic skills, and difficulty collaborating with arithmetic operators. In a related study 

by Ruli et al. (2018), it was noted that the pitfalls observed in the current study were a 

result of epistemological conceptual obstacles of functions that are held as prior 

knowledge, and it needs treatment by using understanding them as they add to the 

learning. Therefore, these pitfalls positioned the four learners' levels of understanding 

in various limited action levels of understanding of quadratic functions. Consequently, 

learners F10, C5 and U25 are positioned at a lower limited level of understanding while 

learner Q21 is at a higher level. As a result, these learners fragmented knowledge 
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gaps. Hence their understanding cannot be fully developed into the process, object, 

and schema conception. 

The second question of Task 0 was based on the concept of transformations. 

Learners were required to explain in words all the transformations that must be applied 

to 𝑦 = 𝑥2 to obtain 𝑦 = −
1

4
(𝑥 + 6)2 + 12. The expected solution to this question is 

shown in Table 4.4. 

Table 4.4: Expected solution of conceptual understanding the effects of transformation 

From 𝑦 = 𝑥2 to obtain 𝑦 = −
1

4
(𝑥 + 6)2 + 12 

The graph is vertically compressed by 𝑎 =
1

4
 units 

The graph is reflected over the 𝑥-axis 

The graph is shifted to the left by 6 units to the left 

The graph is shifted 12 units upwards 

Indicators 2.3 (1.1, 1.4, 2.1, 2.2, 2.9, 2.10) 

Indicator 2.3.1 

Indicator 2.10.1 

Indicator 2.3.5 

Indicator 2.3.4 

The question integrated the tenet of action and process levels of understanding to 

achieve object conception. The question demanded that learners reverse the action 

level indicators of understanding and link them to the process to attain object levels of 

comprehension. Baker et al. (2000), cited by Zazkis et al. (2003), noted that vertical 

transformations nurture action conception. In contrast, horizontal transformations 

require a network of action and process for their attainment.  The findings by Zazkis 

et al. conform to Eisenberg and Dreyfus (1994) that an object understanding is a 

prerequisite for attaining the transformation concept, thus making transformations of 

quadratic functions challenging to grasp as it is an abstract concept. This question was 

challenging to most learners since most did not score good marks while others did not 

write anything. Amongst the participants who tried to answer the question, I sampled 

learners N18, P20, X28 and Z30’s workings on this question to explore their 

understandings of transformations (see Figure 4.4) thoroughly. 
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Learner N18 Learner P20 

  

Learner X28 Learner Z30 

  

Figure 4.4: Learners' conceptual understanding of transformations 

The vignettes presented four learners’ solutions on the aspect of transformation 

involving 𝑦 = 𝑥2. However, two learners have a muddled understanding of the 

transformation. These are learners N18 and P20. However, both learners did not fully 

explain the transformation that is required for 𝑦 = 𝑥2 to be 𝑦 =
1

4
(𝑥 + 6)2 + 12. In the 

vignettes, learner N18 was able to correctly notice that there is a horizontal shift of 𝑦 =

𝑥2 by 6 units to the left, showing the attainment of indicator 2.3.5, while learner P20 

did not specify the position of the shift. The absence of relational understanding of the 

learner inhibited higher levels of cognition and posed conceptual obstacles to learners, 

as said by Skemp (1976). This type of conceptual obstacle concurs with Adu-Gyamfi 

et al. (2019), whose study found that the participants could not fully translate quadratic 

functions, revealing conceptual obstacles of the transformation concept. The notion is 

replicated in this study as learner P20 struggled to state the position of the shift, 

demonstrating fragmented knowledge with horizontal shifts, which inhibits him from 

fully attaining indicator 2.3.5. As seen by Castro et al. (2022), learners posed 

difficulties with translations.  

In the same vignettes, I explored learner Z30’s understanding of transformations. 

The learner started by determining the 𝑥 and 𝑦 intercepts. This demonstrated an 



 

83 

 

inability to comprehend the question, as the learner failed to explain the 

transformations and opted to determine the intercepts. This notion of determining what 

you understand would be explained by Skemp (1976) as exhibiting instrumental 

understanding. The inability to understand questions in mathematics inhibits the 

development of action, process, object, and schema understanding (Arnon et al., 

2014). 

Moreover, given what the learner opted for, surprisingly, the learner even struggled 

to determine the 𝑥-intercepts because of failure to factorise the function, and could not 

determine the y-intercept due to pitfalls in arithmetic skills. The inability to understand 

the question led the learner to look at the shifts from her solution, i.e., 𝑦 = 3, instead 

of reading from the function itself. Therefore, judging the transformation from that 

stance hindered the development and attainment of indicators 2.3, 1.1, 1.4, 2.1, 2.2, 

2.9 and 2.10. Consequently, learner Z30 posed application, comprehension, and 

factual knowledge conceptual obstacles of transformation. 

The last question on Task 0 tested learners' understanding of sketching the 

quadratic functions, writing the vertex, an axis of symmetry, intercepts, max/min, and 

range. This question had three sub-questions. However, in this section, I presented 

the second question due to learners’ performance on the question. In the question, 

learners were given the function, i.e., 𝑦 = −(𝑥 + 5)2 − 2, and were required to sketch, 

write the vertex, write the equation of the line of symmetry, give the min/max values, 

and give the range of the function. The expected solution to this question is captured 

in Table 4.5 below. 
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Table 4.5: Expected solution on understanding graph orientations 

𝑦 = −(𝑥 + 5)2 − 2. Determine the vertex, and 

axis of symmetry, and state whether it has a 
max/min, range. 

 

Vertex (−5; −2) 

Axis of symmetry 𝑥 = −5 

Maximum T.P 

Range 𝑦 ≤ −2 

Indicator 1.1, 1.2, 1.3, 1.5, 1.6, 2.1, 2.2, 2.5, 2.6, 
2.7 

Indicator 2.7.1, 2.7.2, 2.7.3 

 

 

 

 

 

Indicator 1.5, 1.6, 2.6 

Indicator 1.5, 1.6, 2.6 

Indicator 2.6 

Indicator 2.5.1 

As such, most learners in this question posed conceptual obstacles in 

comprehending the quadratic functions orientation. The conceptual obstacles were 

caused by the fact that 𝑎 ≠ 1 inhibited their understanding of sketching the graph, 

determining the axis of symmetry, and determining the range and domain. As noted 

by Nielsen (2015), most learners posed challenges with parameter 𝑎 especially if the 

value is not one. This notion held by Nielsen is confirmed in this study as learners 

failed to explain the effects 𝑎. Amongst the participants who struggled with the 

question, I sampled learners BB4, C5, N18, P20 and X28 (Figure 4.5). 
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Learner BB4 Learner C5 

  

Learner P20 Learner X28 

  

Figure 4.5: Learner conceptual obstacle on sketching the quadratic function 

The learners interacted with the question by showing various understandings 

regarding comprehending graph orientation of quadratic functions. For example, 

exploring learner X28 understandings of graph orientation while interacting with the 

function 𝑦 = −(𝑥 + 5)2 − 2 the participant posed conceptual obstacles. The learner 

sketched the graph facing upwards instead of downwards, disregarding the parameter 

‘𝑎’ (Figure 4.5). The sketch depicts negligence of the importance of parameters, 

especially 𝑎 inhibits the attainment of indicator 2.3. Ellis and Grinstead (2008) studied 

the standard form of a quadratic function and acknowledged that the 𝑎 parameter is 

interpreted as influencing the shape of the graph. However, learner X28 ignored the 

effects of parameter 𝑎 when graphing. Moreover, Ellis and Grinstead add that 



 

86 

 

participants would assume that changing the value of 𝑎 in the function does not alter 

the vertex's location. This notion is seen in learner X28’s solution as he drew the graph 

facing upwards instead of downwards. This type of conceptual obstacle was also 

observed in learner BB4’s solution. As such, these learners ignored the meaning of 

the parameter ‘𝑎’ while sketching the graph; therefore, they had a limited action 

conception involving the parameter ‘𝑎.’ Hence, the learners' understanding based on 

the precedent genetic decomposition failed to tap into a whole action level of 

understanding, which inhibited the development of process, object, and schema level 

of understanding of parameters. Consequently, this posed difficulties in grasping 1.1, 

1.2, 1.3, 1.5, 1.6, 2.1, 2.2, 2.5, 2.6 and 2.7 indicators of understanding, hindering the 

development of coherently built mental structures. 

On the same question, some learners posed conceptual obstacles with the axis of 

symmetry, while they showed some limited understanding of the shape of the graph. 

For example, learners' C5 and P20 understanding of the form seemed cluttered and 

fragmented. The vertex form gives the vertex of the graph, and the 𝑥-coordinate of the 

vertex gives the equation of the axis of symmetry.  However, the two learners have 

pitfalls in possessing complete indicators for the vertex of a function. If learners C5 

and P20 had these indicators, they would have written down the vertex as (−5; −2) 

and the line of symmetry as 𝑥 = −5 from the function itself. However, learner P20 gave 

an incorrect vertex as (5; −2) instead (−5; −2), surprisingly the learner struggled even 

to plot the vertex. The failure to correctly plot the critical values of a function hinders 

the development of 1.5, 1.6 and 2.6 indicators of understanding. As noted by Bossé 

et al. (2011), learners posed a conceptual obstacle on reading coordinates on a graph. 

For instance, the coordinates (5; −3) were read as (−3; 5). However, learner C5 could 

represent the line of symmetry on the graph but failed to write the equation of it (Figure 

4.5). From learner C5’s understanding, he does not fully comprehend the equation of 

the symmetry line since he could correctly represent it on the negative side of the 

Cartesian plane and failed to represent it algebraically. This conceptual obstacle 

supports the findings by Mpofu and Pournara (2018). The researchers noted that 

learners posed conceptual obstacles to transit from one form to another. The failure 

to perform such understandings inhibits the development of a complete action level of 
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understanding, which inhibits the learners' understanding in attaining these indicators, 

i.e., 1.1, 1.2, 1.3, 1.5, 1.6, 2.1, 2.2, 2.5, 2.6, 2.7. 

Additionally, the question required learners to give the range of the function, i.e., 

𝑦 = −(𝑥 + 5)2 − 2. To explore the understanding of range, I sampled learner BB4’s 

workings. Learner BB4 failed to write the range of the function, i.e., 𝑦 = −(𝑥 + 5)2 − 2 

in a correct format using the brackets. He could note the range but failed to present it 

in writing. As such, the learner failed to attain a complete action level of understanding 

as it was inhibited by failure to grasp indicator 2.5.1. Using the brackets in mathematics 

is tricky for learners since they misuse them without understanding them. The shape 

of brackets, that is, either round bracket, (, or, square bracket,] which means two 

different things. In mathematics, the use of “(” means excluded while “]” means 

included. Learner BB4 had a challenge with the issue of brackets (Figure 4.5). He 

failed to explain or give the range with the brackets correctly. Instead, he assumed 

that the range of the function is not inclusive of both values of −2 and ∞. Aziz et al. 

(2019) noted such conceptual obstacles. The researchers pointed out that the 

participants had difficulty noting variables given the range. They found that several 

participants used 𝑥 to denote range instead of 𝑦. Therefore, such conceptual obstacle 

impedes the full grasp of the concept of range. Thus, this inhibits its representation 

using correct notation.  

4.2.1.2. The forms of a quadratic function 

The quadratic function is one of the forms 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 where the variables 

𝑎, 𝑏 and 𝑐 are integers and the value of 𝑎 ≠ 0 (Nielsen, 2015). More formally, a 

quadratic function is a function with a degree of two, and its graph is called a parabola, 

which is recognised for its U-shaped (Pender et al., 2011). The quadratic function can 

be expressed in three different forms, i.e., standard form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, factored 

form 𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2), and vertex form 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞 (Ousby et al., 

2008). Mutambara et al. (2019) noted that these forms demonstrate some graphical 

information related to the location of particular points on the graph. They asserted that 

the standard form reveals the location of the 𝑦-intercept (0; 𝑐), the vertex form 

indicates the turning point of the graph (𝑝; 𝑞), and the factored form gives the 𝑥-

intercept of the function (𝑥1; 0) and (𝑥2; 0). 
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However, navigating through the literature reveals that most learners are over-

reliant on the standard form, which inhibits understanding of all quadratic functions 

forms (Díaz et al., 2020; Didiş et al., 2011; López et al., 2016; Metcalf, 2007; 

Mutambara et al., 2019; Ubah & Bansilal, 2018a). Consequently, such overreliance 

limits their understanding of quadratic functions to comprehension of 𝑦-intercept only. 

The limitation posed by these learners leads to several conceptual obstacles, such as 

denoting the value of 𝑎 to mean the gradient of the function and thinking that quadratic 

functions cannot be written in a vertex or factored form (Parent, 2015). For example, 

in this study, the first task during the activities phase required learners to interact with 

the vertex form. Learners were given 𝑦 = 1 − (𝑥 − 1)2 and asked to check if this is a 

parabola and re-writing it in the standard form. The expected solution to this question 

is shown in Table 4.6 below. 

Table 4.6: Expected solution to understanding the forms of quadratic functions 

𝑦 = 1 − (𝑥 − 1)2  

Quadratic or not? 

The function is quadratic in the vertex form 

Re-writing it in a standard from: 

𝑦 = 1 − (𝑥 − 1)2  

𝑦 = 1 − (𝑥 − 1)(𝑥 − 1)  

𝑦 = 1 − (𝑥2 − 2𝑥 + 1)  

𝑦 = 1 − 𝑥2 + 2𝑥 − 1  

𝑦 = −𝑥2 + 2𝑥  

Indicators 1.1, 2.1, 2.2, 2.9 

 

Indicator 1.1 

 

Indicators 1.1, 2.9 

Most learners could conceive that this is a parabola due to the presence of degree 

two on the brackets. The learners' ability to conceive that this was a quadratic function 

exhibits the presence of indicator 1.1 understanding. However, re-writing it in the 

standard form was challenging for most learners. López et al. (2016) noted that 

learners held instrumental understanding but often failed to exhibit it if needed. This 

assumption held by López et al. was replicated in this study as learners knew the 

properties of quadratic functions but failed to apply the knowledge, i.e., for re-writing 

the function into the required form. Amongst the participants that struggled to re-write 

the function in the standard form are learners A1, AA2, B3 and R22 (Figure 4.6). 
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Learner A1 Learner AA2 

  

Learner B3 Learner R22 

  

Figure 4.6: Learners conceptual obstacles of connection between vertex and standard form 

The question required learners to transit the function into a standard form from the 

vertex form. Learners posed conceptual obstacles with the concept of transition from 

one form into another. Thus, exploring learners' understanding of transitioning from 

one form into another, I started by looking into learner AA2’s solution. For example, 

learner AA2 acknowledged that degree two on the brackets implies expanding the 

brackets twice when working with the question. Such a method of expanding the 

function asserts that the learner posits a whole developed skill of algorithms. As noted 

by Fitzmaurice and Hayes (2020), learners’ poising type of skills implies that their 

understanding is in the developed stage of understanding.  However, going deeper 

with the learner AA2’s solution, it can be seen that the learner posed a conceptual 

obstacle as she could not correctly apply the product rule as she purposeful neglected 

the negative sign between the constant 1  and the brackets. The issue of product rule 

was also observed in learners A1, B3 and R22. Leong et al. (2010) also saw the 

conceptual obstacles relating to factorisation. In their study, the researchers asserted 

that learners view quadratic functions as abstract.  

The abstract nature inhibits the entire understanding of transitioning from one form 

to another due to a lack of sufficient algebraic skills to tackle the transition. 
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Consequently, these learners posed a challenge with simplifying the function involving 

negative values. The failure to link quadratic functions and algebra inhibits learners' 

understanding of functions. Consequently, the absence of such understanding inhibits 

the attainment of indicator 2.9. As noted by Díaz et al. (2020), the researchers found 

that the participants in their study could not integrate the understanding of quadratic 

functions and algebra. 

Moreover, in a related study, Didiş et al. (2011) found that the failure to integrate 

the two concepts, i.e., quadratic functions and algebra, was caused by the absence of 

relational understanding underlying the connections between the forms. The absence 

of relational understanding in understanding the forms of quadratic functions inhibits 

the full attainment of indicator 2.9. Furthermore, the learners seemed to pose pitfalls 

in arithmetic and algebraic operational skills to simplify functions. Therefore, Metcalf 

(2007) found that the absence of these operational skills inhibits the development of 

complete understanding. As such, in this study, the lack would impede the action level 

of understanding, which hinders the grasp of the process, object and schema 

understanding of the transition from one form to another. 

Furthermore, learners seemed not confident with a negative parameter ‘𝑎’ as they 

tried to make it positive at the end. This notion inhibited the grasp of indicator 2.3. 

Learners are used to solving quadratic equations where 𝑎 = 1 and are not accustomed 

to 𝑎 ≠ 1. They seem to have a limited instrumental understanding of the forms of 

quadratics. This instrumental understanding seemed to be caused by the overreliance 

on one form of the quadratic functions and treating questions where the parameter is 

always 𝑎 = 1. As also observed in the work of Kotsopoulos (2007). Kotsopoulos found 

that learners were accustomed to working with one form of a quadratic function. This 

idea held by Kotsopoulos seemed to be reoccurring in this study as the participants 

presumed that the function was given in a standard form.  

Looking at the learners' solutions again, I found that learners posed conceptual 

obstacles with the meaning of an equal sign. For example, learner AA2 was muddled 

with the meaning of an equal sign, as the learner wrote 𝑦 = −𝑥2 − 2𝑥 + 2  and later 

wrote 𝑦 = 𝑥2 + 2𝑥 − 2, in which the two cited functions from her solution are not equal 

(see Figure 4.7). This held notion of misused equal sign inhibits relational 
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understanding of quadratic functions. Blanton et al. (2018) noted that learners posed 

an instrumental understanding of an equal sign as the participants persistently 

continued to pose computation difficulties with the meaning of the equal sign. I also 

observed the misuse of the meaning of the equal sign in the other sampled learner. 

For example, learner R22 wrote = 1 + 𝑥2 + 2𝑥 − 1 as = 𝑥2 + 2𝑥 − 2. The learner's 

negligence of not seeing that ‘1 − 1 = 0’ concerns the learner’s arithmetic action 

conception. Thus, the level of understanding with the transition from one form to 

another is fragmented with arithmetic and algebraic operational skills that hinder the 

development of the process and object conception. 

I explored another question to thoroughly have a clear picture of learners' 

understanding of quadratic function forms. The question required learners to transit 

from the standard form into the vertex by completing the square. The learners were 

given the function, i.e., 𝑦 = 𝑥2 − 4𝑥 + 5 and required to write it in the vertex form by 

completing the square. The expected solution is captured in Table 4.7 using the 

method of completing the square. 

Table 4.7: Expected solution on completing the square 

𝑦 = 𝑥2 − 4𝑥 + 5  

𝑦 − 5 = 𝑥2 − 4𝑥  

𝑦 − 5 + 4 = 𝑥2 − 4𝑥 + 4  

𝑦 − 1 = 𝑥2 − 4𝑥 + 4  

𝑦 − 1 = (𝑥 − 2)2  

𝑦 = (𝑥 − 2)2 + 1  

Indicator 1.1, 2.1, 2.2, 2.9 

Most of the learners seem to be challenged by this concept of transitioning from 

one form to another. This was caused by fragmented understanding in completing the 

square. To understand the transition from one form to another using completing the 

square method, I explored learners D7, DD8, G11 and U25’s understanding of transit 

from standard to vertex form in Figure 4.7. 
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Learner D7 Learner DD8 

  

Learner G11 Learner U25 

  

Figure 4.7: Failure to complete the square, leading to conceptual obstacles 

The question required learners to tap into their prior knowledge of algebra to 

transition from the standard form into the vertex form by completing the square 

method. However, learners seem to be fragmented with knowledge of completing the 

square. For example, learner D7 encountered challenges transitioning from the 

standard form to the vertex form due to a conceptual obstacle in completing the 

square. These conceptual obstacles in completing the square were also observed 

from learner DD8. The conceptual obstacles emerged from the denoting 𝑐 in the 

standard form to be 𝑞 in the vertex form. Therefore, such conceptual obstacles 

inhibited the learners from grasping the 1.1 indicators of understanding completely. 

Hence, these conceptual obstacles were also replicated in the solutions of learners 

D7 and DD8. Both learners wrote 𝑥2 − 4𝑥 as (𝑥 − 2)2 demonstrating undeveloped 

understanding of algebraic concepts since they could not note that  𝑥2 − 4𝑥 ≠

(𝑥 − 2)2. The meaning of an equal sign seemed persistent in this study, as some 

participants continued to misuse it. This meant that the learners possessed an 

instrumental understanding of the meaning of the equal sign. Muchoko et al. (2019) 

noted that learners often lacked the relational meaning of an equal. The knowledge of 

algebra is necessary to nurture an understanding of quadratic functions. However, 

Muchoko et al. noted that learners often confuse the link between the two concepts. 
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As such, the confusing link between the two notions inhibits the full attainment of the 

action level of understanding of quadratic functions. Hence, the analysis revealed that 

learners posed a muddled understanding of completing the square and pitfalls from 

prior knowledge of algebra. Zaslavsky (1997) posits that the different form of 

quadratics reveals specific information about the location of the y-intercept (0; 𝑐), the 

turning point of the graph (𝑝; 𝑞), and the roots of the function (𝑥1; 0) and (𝑥2; 0). 

Consequently, learners D7 and DD8 ignored the notion held by Zaslavsky. Instead, 

they equated 𝑐 and 𝑞. Such fragmented understanding inhibits the attainment of 

complete understanding of these indicators, i.e., 1.1, 2.1, 2.2, 2.9, which are necessary 

for the development of understanding in transition from one form to another. Thus, 

both learners struggled to develop their understanding of the transition from one form 

to another. While exploring learners' G11 and U25 understanding, I noticed that the 

learners might possess some understanding of completing the square. However, they 

seem to have an unstable understanding of arithmetic and algebraic operational skills, 

which inhibit the full attainment of the method, i.e., completing the square. Such 

fragmented understanding posed challenges to their understanding of transitions, 

hindering nurturing of action, process, object, and schema understanding. 

4.2.1.3. The axis of symmetry 

The axis of symmetry is drawn vertically on the parabola through the 𝑥-coordinate of 

the vertex or turning point of the graph, which divides the graph into two halves. 

Moreover, it can be viewed as a function or as a number derived from a formula; given 

the standard form, it can be derived as 𝑥 = −
𝑏

2𝑎
. The literature noted that learners 

assert that an axis of symmetry as numbers instead of functions demeans the 

relational part of the concept (Díaz et al., 2020; Didiş et al., 2011). Consequently, 

demeaning the concept to be a number instead of a function raises conceptual 

obstacles with the concept. Therefore, presented with this, learners would struggle 

with understanding the axis of symmetry. In this study, participants interacted with the 

concept of the axis of symmetry. Some could determine the equation and seemed to 

show some understanding traits; while others, such as learners E8, F10, G11, O19 

and Z30, posed conceptual obstacles with the concept. Learners were given two 
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functions, i.e., 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 1 − (𝑥 − 1)2 to determine the axis of symmetry, 

respectively. The expected solution to the question is captured in Table 4.8 below. 

Table 4.8: Expected solution to understanding the concept of line of symmetry 

Determine the domain and range of 𝑓(𝑥) = 𝑥2  

and 𝑔(𝑥) = 1 − (𝑥 − 1)2. 

𝑓(𝑥) = 𝑥2  

𝑥 = 0  

𝑔(𝑥) = 1 − (𝑥 − 1)2  

𝑥 = 1  

Indicator 2.7 

 

Indicator 2.7.2 

 

Indicator 2.7.2 

To track learners' understanding of the axis of symmetry in this study, I explored 

the response of learners O19 and Z30. The solutions of the two learners are captured 

in Figure 4.8. 

Learner O19 Learner Z30 

  

Figure 4.8: Learners' lack of meaning of the axis of symmetry 

Learners were required to demonstrate their understanding of symmetry from 𝑓(𝑥) 

and 𝑔(𝑥). Although 𝑓(𝑥) seems not to demand more when one needs to determine 

the symmetry equation, learners posed conceptual obstacles. For example, from the 

vignettes, learner O19 wrote the equation of the axis of symmetry as 𝑓(𝑥) = 0, while 

𝑓(𝑥) ≠ 𝑥. Delving deeper into learner Z30’s understanding, she started to write the 

values of 𝑎, 𝑏 and 𝑐. Such conceptual obstacles inhibited the full grasp of 2.7 indicators 

of understanding. This hindered the grasp of 2.7 indicators of understanding as the 

learner failed to note that the value of 𝑐 is not essential while determining the axis of 

symmetry. As a result, learners O19 and Z30 seem to be fragmented in their 

understanding of the meaning of 𝑓(𝑥). Thus, this fragmentation is a result of functions 

being dual in nature (Kenney, 2005). Kenney noted that functional notations are 
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difficult for learners due to their nature as an operation and an object simultaneously. 

Moreover, learners thought that 𝑓(𝑥) = 3𝑥 + 1 is a rule which inhibited its full grasp of 

being a process and object. Consequently, this fragmented knowledge of the notation 

used in functions resulted in learner O19 equating 𝑓(𝑥) with 𝑥. However, in an actual 

sense, the two aspects are not equal as 𝑓(𝑥) = 𝑦 and 𝑦 ≠ 𝑥 in functions. Similarly, 

Muchoko et al. (2019) noted that learners posed immature understanding regarding 

an equal sign. This was seen in learner O19’s solution as the learner equated 𝑦 and 

𝑥. 

Consequently, the notion of equating 𝑦 and 𝑥 inhibited the complete development 

of the 2.7.2 indicator of understanding as the learner failed to note that the line of 

symmetry is given by 𝑥 and not 𝑦. The learner writing that the equation of symmetry is 

𝑓(𝑥) = 0 reveals that the learner’s understanding of intercepts is fragmented. As noted 

in a study by Ndlovu et al. (2017), one of the participants given 𝑓(𝑥) = 𝑎(𝑥 ± 𝑝)2 + 𝑞 

interpreted the vertex form and gave (𝑥 ± 𝑝) as the vertex instead of 𝑥 = ±𝑝. Such a 

conceptual obstacle demonstrated an underdeveloped understanding of axis 

symmetry. Thus, such a knowledge gap impedes full attainment of the concept; as a 

result, this is the reason why learner O19’s understanding was underdeveloped.  

The fragmented knowledge of the axis of symmetry cuts across learner Z30’s 

levels of understanding. Hence, learner 019 equated the axis of symmetry with ‘𝑦,’ 

while it is given by the ‘𝑥’ value of the vertex; therefore, learner O19, by writing that 

𝑓(𝑥) = 0 meant that 𝑦 = 0, which is not the equation of the line of symmetry but rather 

the 𝑦-intercept. The learner wrote the axis of symmetry for the second function again 

as 𝑔(𝑥) = 1. As such, this means that the learner does not have a complete 

understanding of the meaning of 𝑓(𝑥)/𝑔(𝑥) and intercepts. Learners often 

misunderstand using notations in quadratic functions, inhibiting the understanding of 

functions. Therefore, learner O19’s understanding of the axis of symmetry seems 

fragmented. The fragmentations result from pitfalls in understanding intercepts and 

the meaning of notation in functions. 

Furthermore, going deeper with learner Z30’s solutions of determining the axis of 

symmetry, the learner started by writing the values of 𝑎, 𝑏 and 𝑐 as stated above. 

Looking at her solution, the learner wrote the quadratic formula instead of 𝑥 = −
𝑏

2𝑎
. 
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The learner's first step cannot be disputed as the vertex formula requires using those 

values. Therefore, according to Fitzmaurice and Hayes (2020), skill algorithms 

dimensions of understanding would mean that the learner exhibited the first dimension 

of understanding. Therefore, from the dimensions of Fitzmaurice and Hayes, it would 

mean that learners posit some understanding for determining the axis of symmetry. 

However, Díaz et al. (2020) would classify the understanding as instrumental instead 

of relational understanding. Moreover, this type of understanding posed by learner Z30 

is not yet fully developed and inhibits the understanding of the axis of symmetry. 

Therefore, learner Z30’s understanding of the axis of symmetry is fragmented due to 

the absence of relational understanding of when to use the quadratic formula. The 

learner used the quadratic formula, i.e., 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 instead of the vertex equation 

of determining the 𝑥 value that is 𝑥 =
−𝑏

2𝑎
, which demonstrated undeveloped 

understanding of equations and functions. Subsequently, this means that the learner 

is fluent with the conception of vertex and the axis of symmetry (Groves, 2012). Such 

a skills algorithm, as put by Díaz et al., would mean that the learner failed to tap into 

correct knowledge schemas denoting the participant to have posed undeveloped 

understanding of the axis of symmetry and underdeveloped knowledge of equations.  

Consequently, analysing the learners' understanding from Díaz et al.’s (2020) 

perspective would mean that the learner is in possession of instrumental 

understanding. Thus, as it is evident that the participant is fluent with procedures, if 

learner Z30 had been given the formula to determine the line of symmetry, she could 

have managed to determine the line equation without understanding the concept. This 

indicates that the learner could use procedures without comprehending what they are 

determining. Looking at the other function, i.e., 𝑔(𝑥) = 1 − (𝑥 − 1)2, learner Z30 

assumed that this was not a quadratic function. Their justification may be based on 

the fact that the function is not written in the form they are familiar with, as seen by 

Parent (2015) that learners are accustomed to one form of quadratic functions. 

Therefore, learner Z30’s understanding of forms and axis of symmetry is muddled, 

inhibiting the grasp of 1.1 and 2.7 indicators of understanding.  

Moreover, to thoroughly examine the axis of symmetry concept, I explored another 

question that required an understanding of the concept. The question involved the 
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concept of the vertex. The concept requires learners to tap into the knowledge of the 

axis of symmetry before they attend to the concept. The learners were given the 

function in a standard form, i.e., 𝑓(𝑥) = 2𝑥2 + 2𝑥 − 12. They were required to 

transform the function into ℎ(𝑥) first before determining the vertex of the new function. 

The expected solution on their understanding vertex is shown in Table 4.9. 

Table 4.9: Expected solution for learners understanding the vertex 

The graph of ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 has a 

maximum value of 15 at 𝑥 = 2. Determine the 

values of 𝑝 and 𝑞 

The turning point of 𝑓(𝑥): (1; 18) 

The turning point of ℎ(𝑥): (2; 15) 

∴ 𝑝 = −1 and 𝑞 = −3 

Indicators 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.6, 2.7, 
2.10, 3.1, 3.2, 3.3, 3.4 

Therefore, in pursuit of the learners' understanding of the vertex, I looked into 

learner G11’s understanding of the concept (Figure 4.9). 

Learner G11 

 

Figure 4.9: Conceptual obstacle of the axis of symmetry 

The question was advancing higher indicators of understanding. However, some 

learners could not tap into the required indicators of understanding. For example, 

learner G11 misunderstood the concept of the axis of symmetry. Tracking G11’s 

solution for the axis of symmetry is puzzling, as the learner failed to understand the 

question which was given as ℎ(𝑥) = 𝑓(𝑥 − 7) + 2. Instead, learner G11 viewed the 

question as a vertex form which is the reason why he wrote 𝑥 = 𝑝 = 7. This conceptual 

obstacle inhibited the full attainment of the action, process, and object levels of 

understanding. The inhibition was caused by the failure to grasp the following 

indicators for understanding, i.e., 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.6, 2.7, 2.10, 3.1, 
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3.2, 3.3 and 3.4. Consequently, the learner’s failure to attain these indicators implied 

that he was not efficient enough to grasp the concept entirely. 

The difficulty in understanding the complete picture of the forms of quadratic 

functions seems to be persistent in this study. As stated by Kotsopoulos (2007), 

learners are accustomed to one form of quadratic function, inhibiting them from fully 

understanding quadratic function concepts. Thus, this inhibited complete 

understanding of the vertex and posed challenges to the learner. Therefore, the 

learner had a muddled conception of the vertex form since he failed to explicitly see 

that the question was not necessarily in the vertex form. The failure to correctly write 

the value of “𝑝” but directly copying it from the questions supports the idea of learners' 

fragmented knowledge of the importance of parameters, as noted by Zaslavsky 

(1997). This notion inhibited the complete grasp of the 2.9 indicators for 

understanding. The learners' solution clearly indicate that they memorised that the 

value of p gives the axis of symmetry found in the (𝑥 − 𝑝) of the vertex form. Their 

understanding of the concept was instrumental and inhibited the full attainment of the 

action concept of the action and process levels of understanding of the vertex concept. 

This meant that the learners posed an instrumental understanding of parameters and 

the axis of symmetry.  

This results in the learners' understanding of the quadratic functions in a 

fragmented stage. Consequently, learner G11’s understanding of the axis of symmetry 

seemed to be fragmented as from ‘ℎ(𝑥) = 𝑓(𝑥 − 7) + 2’ it is clear that ‘𝑓(𝑥 − 7)’ is not 

raised to the exponent of two, which differs from their prior knowledge of quadratic 

function. This indicated that the learner did not wholly understand quadratics. As such, 

the learner would not recognise quadratic equations in algebra.  The learner struggled 

to understand that 𝑓(𝑥 − 7) meant 2(𝑥 − 7)2 + 2(𝑥 − 7) − 12. Therefore, learners 

misunderstood the meaning of 𝑓(𝑥) or 𝑓(𝑥 − 7). As seen by Hasanah et al. (2021), 

the understanding of one participant was limited, as the learner substituted 𝑥 = 1 into 

𝑓(𝑥) = 𝑥2 + 2𝑥 + 6 as 𝑓(𝑥) = (1)2 + 2(1) + 6. The learner failed to note that 𝑥 = 1 

was supposed to be substituted on both sides. Therefore, such ignorance posits the 

learners' understanding of 𝑓(𝑥) to be undeveloped. These findings by Hasanah et al. 

were replicated in this study as they misunderstood the meaning of 𝑓(𝑥 − 7) + 2 and 

thought that ℎ(𝑥) was given in vertex form. 
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4.2.1.4. The domain and range of a quadratic function 

The domain deals with the 𝑥-axis, and this concept looks for values for which the 

function is defined along the 𝑥-axis. In contrast, the range of a function deals with the 

𝑦-axis. Again, this looks at the function where it is defined. However, the knowledge 

of domain and range in the school mathematics fosters instrumental understanding as 

the CAPS document limits us to foster this understanding. In this study, learners were 

given the function, i.e., 𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16 and were required to determine the 

domain and range of the function. The expected solution to this question is captured 

in Table 4.10. 

Table 4.10: Expected solution of understanding the domain and range 

Determine the domain and range: 𝑓(𝑥) = −2𝑥2 +
4𝑥 + 16 

Domain:−∞ < 𝑥 < ∞  

Range: 

𝑦 ≤ 18 or 𝑦 ∈ (−∞; 18] 

Indicators 1.1, 2.1, 2.2, 2.4, 2.5 

 

Indicator 2.4.1 

Indicator 2.5.1 

However, some learners managed to portray correct indicators regarding their 

understanding of the domain concept while understanding the range posed difficulties. 

This meant that most of them could exhibit indicator 2.4.1 for understanding the 

domain. At the same time, the concept of the range challenged others. The learners 

who posed conceptual obstacles include CC6, F10, G11 and K15 (Figure 4.10). 
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Learner CC6 Learner F10 

  

Learner G11 Learner K15 

  

Figure 4.10: Learners' conceptual obstacle of the range concept 

The learners interacted with the concept of domain and range because of its 

nature. They seem to have pitfalls with an especially understanding range. However, 

for most of them to correctly write the definition of domains for 𝑓(𝑥) does not connote 

a complete understanding of the concept. As put by Díaz et al. (2020), learners are 

holders of instrumental understanding, which is not fully developed to nurture relational 

understanding. In this case, the instrumental understanding of the domain did not 

nurture the knowledge of the range. The learners who determined the domain correctly 

and failed to exhibit range included learner CC6. 

However, according to Fitzmaurice and Hayes’ (2020) dimensions of 

understanding, the learner failed to link the property proof and application dimensions 

of understanding. Therefore, the absence of such links based on the dimensions of 

understanding laid by Fitzmaurice and Hayes inhibits the grasp of amalgamated 

concepts. From the vignettes, it can be noted that learner CC6 struggled to determine 

the value of the line of symmetry; instead, the learner mistakenly wrote −4, which was 

the wrong value of the range. The learner failed to notice that −4 was the value of 𝑏. 

As noted by Nielsen (2015), learners struggle to work with quadratic functions, 

especially if one of the values of 𝑎, 𝑏 and 𝑐 is zero. 
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Moreover, the learner incorrectly misused the brackets without understanding their 

meaning. The misuse was also seen in the solutions of learners F10 and K15. These 

learners struggled to use the brackets to give the range of the function correctly. This 

notion meant that learners CC6, F10 and K15 posed a limited understanding of using 

mathematical brackets to represent intervals. While tracking learner G11’s 

understanding of the range concept, the learner wrote that 𝑦 = 16. The answer from 

this learner meant that he viewed  𝑞 = 𝑐. The learner used the value of the 𝑦-intercept 

instead of the 𝑦 value of the vertex to give the range. The notion of equating 

parameters inhibits understanding the effects of parameters thoroughly. As noted by 

Fonger et al. (2020), learners often struggle to interpret parameters of quadratics, 

which hinders understanding of the concept. The learner wrote 𝑦 = 16 as the solution 

to the question. They seem to lack the meaning of the use of an equal sign. This is 

related to Muchoko et al.’s (2019) findings, as seen from their work, that the learners 

posed relational conceptual obstacle concerning an equal sign.  

In this study, learner G11 seemed to have a relational conceptual obstacle of an 

equal sign as he thought that the 𝑦 value of the range equals the 𝑦-intercept of the 

function. The learner's solution resulted from the wrong answer in determining the 

graph's vertex. I assume that the learner knows that 𝑞 gives the range, but in her case, 

it is not 𝑞 but rather 𝑐. Thus, the learner equates 𝑞 and 𝑐. This implies that the learner 

possesses some limited understanding of 𝑞 that it gives the range. The learners' failure 

to understand the range inhibited the 2.5.1 indicator for understanding. Therefore, 

these pitfalls inhibited the full grasp of the indicators for understanding the range 

concept. Thus, these pitfalls positioned learner G11’s understanding of range in a 

limited lower action level. This limited lower action level seemed to be caused by 

fragmented knowledge pertaining to the understanding of the 𝑦 intercept and the 

vertex.  

4.2.1.5. The 𝑦-intercept 

The analysis of the 𝑦-intercept started with the exploration of the learners' work on 

how they responded to the questions. Understanding the 𝑦-intercept is considered 

easy, especially when it is ‘𝑐’ in the standard form.  Pender et al. (2011) state that each 

form reveals specific properties and that the standard form gives the 𝑦-intercept of the 
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function. However, the conceptual obstacle of the 𝑦-intercept surfaced when learners 

started to interact with the vertex form, demonstrating a lack of understanding of the 

𝑦-intercept. Hattikudur et al. (2012) asserted that a lack of knowledge of the 𝑦-intercept 

inhibits learners' understanding of drawing graphs. The participants were given a 

function in a vertex form, i.e., 𝑦 = 1 − (𝑥 − 1)2 and were required to graph the function. 

The learners started by determining the 𝑦-intercept. The expected solution to 

determining the 𝑦-intercept is shown in Table 4.11. The question demanded that 

learners should exhibit prior knowledge of substitution and simplifying. This 

knowledge, which is required in this question, advanced to attain 1.2 indicators of 

understanding. 

Table 4.11: Expected solution to understanding the y-intercept 

𝑦 = 1 − (𝑥 − 1)2  

𝑦-intercept 

Let 𝑥 = 0 

Substitute 𝑥 = 0 into 𝑦 = 1 − (𝑥 − 1)2 

𝑦 = 1 − (0 − 1)2  

𝑦 = 0  

∴ 𝑦-intercept: (0; 0) 

Indicators 1.1, 1.2, 2.7 

Indicator 1.2 

Indicator 1.2.1 

Indicator 1.2.2 

Indicator 1.2.3 

 

Indicator 1.2.5 

The analysis and discussion on the understanding of the 𝑦-intercept captured 

Z30’s work in Figure 4.11. The learner posed a conceptual obstacle of the concept of 

the 𝑦-intercept. 
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Learner Z30  

 

Figure 4.11: Z30's conceptual obstacle of the y-intercept 

The learner was given the vertex form, i.e., 𝑦 = 1 − (𝑥 − 1)2 and was required to 

graph the function. Graphing the functions requires the learner to determine the 

intercepts, i.e., 𝑥 and 𝑦-intercept. However, in this section, I explored learner Z30’s 

understanding of the 𝑦-intercept of the function. As noted by Malahlela (2017), learners 

posed an understanding of what should be done to graph a function. However, 

Malahlela found that learners posed an understanding of intercepts, but it was 

fragmented as the participants confused the 𝑦-intercept of the function and 𝑦-intercept 

of the vertex. For example, learner Z30 thought that the 𝑦 value of the vertex is the 𝑦-

intercept as in the standard form 𝑐 is the 𝑦-intercept. It can be seen from learner Z30’s 

solution that the participant possessed an understanding of intercepts. However, this 

understanding is fragmented as he substituted zero into 𝑦 while he wrote “𝑥-

intercepts”. This clearly indicates that the learners' understanding of intercept is not 

yet entirely developed to advance for the indicators of understanding pertaining to the 

level.  

Consequently, the confusion of losing track of what he should have determined 

and opting for 𝑥-intercepts inhibited the full attainment of 1.2 indicators for 

understanding and further hindered 1.1, 2.7 and 3.4 indicators. Hence, from the 

learner’s solution, he was fragmented with the knowledge of parameters. Conversely, 

the absence of such understanding impedes a full grasp of the intercepts concept in 

quadratic functions. As a result, the learner could not fully develop into the 1.2 
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indicators for understanding. The learner confused the properties of what the standard 

form gives versus the properties of the vertex form as noted by Hasanah et al. (2021) 

when studying learners' understanding of intercepts. Hasanah et al. found that 

learners posed traits of understanding the intercepts but could not plot them correctly. 

For example, they accurately determined the intercept of 𝑓(−1) from 𝑓(𝑥)2𝑥 + 5 

as(−1; 3) but plotted (−1; −3). Such ignorance implied that they failed to have a full 

grasp of understanding intercepts. 

4.2.1.6. The transformation involving quadratic functions 

In exploring learners' understanding of transformations of the quadratic function, I 

tracked learners’ solutions which nurtured the concept. However, transformations 

involving quadratic functions posed challenges to the learners due to conceptual 

obstacles about the concept. For example, Anabousy et al. (2014) hold the same view 

regarding the difficulties posed by transformations. Their study noted that many 

learners do not understand the procedures for transforming functions due to 

instrumental rather than relational understanding. However, the absence of relational 

understanding suggests why learners could not see the link of 𝑓(𝑥) versus 𝑓(𝑥 + 𝑘). 

Moreover, Anabousy et al. noted that the conceptual obstacles of transformation are 

rooted in misconceived knowledge of functions. Eisenberg and Dreyfus (1994) assert 

that there is more involved in processing the transformation 𝑓(𝑥 + 𝑘) than 𝑓(𝑥) + 𝑘. 

Thus, a type of transformation process requires relational instead of instrumental 

understanding. The learners must delve deeper into what happened from 𝑓(𝑥) to have 

𝑓(𝑥 + 𝑘) before applying the computational process.  

In a related study, Zazkis et al. (2003) held that the conceptual obstacle in 

transformation is rooted in instrumental understanding. The study began by viewing 

the function 𝑦 = 𝑥2 and being transformed into 𝑦 = (𝑥 − 3)2. The study held that most 

learners would posit the conception that 𝑦 = (𝑥 − 3)2 is shifted three units to the left 

due to the presence of the negative sign. However, in an actual sense, it is shifted to 

the right by three units. Therefore, in this study, the task that required learners to 

exhibit their understanding of transformation firstly focused on translation. Learners 

were given the function 𝑔(𝑥) = 6 + 2𝑥 − 𝑥2 and were required to reflect it over the 𝑥-

axis. This question advanced for attaining 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.10, 3.1 and 3.4 
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indicators of understanding. The expected solution for learners to understand the 

reflection is captured in Table 4.12. 

Table 4.12: Expected solution on reflection concept 

Determine 𝑔′(𝑥) by reflecting 𝑔(𝑥) = 6 + 2𝑥 − 𝑥2 

over the 𝑥-axis 

 

𝑔′(𝑥) = −[𝑔(𝑥)]  

𝑔′(𝑥) = −(6 + 2𝑥 − 𝑥2)  

𝑔′(𝑥) = −6 − 2𝑥 + 𝑥2  

 

 

Indicator 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 
2.10 

Most of the learners failed to answer this question; instead, they drew the parent 

function incorrectly and reflected the incorrect graph. The learners were working in 

groups of four to respond to this question. Among the learners who showed limited 

understanding of transformations are AA2, B3, P20 and Z30, and their solution is given 

in Figure 4.12.  
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Group A (AA2, B3, P20 and Z30) 

 

Figure 4.12: Group A’s incorrect translated graph about the x-axis 

The learners interacted with the concept of transformation. However, for them to 

be able to transform the function, they were required to determine 𝑔′(𝑥) first and then 

graph both the functions, i.e., 𝑔(𝑥) and 𝑔′(𝑥). Baker et al. (2000) state that an object 

conception is necessary for understanding transformation. The object conception of 

the quadratic function explains the abstract issues pertaining to transformations. As 

put by Zazkis et al. (2003), there is more required from the understanding of 𝑦 = 𝑥2 to 

the conceptualising 𝑦 = (𝑥 − 3)2. Transformation in this study posed challenges to 

learners. This type of question is seen by Zazkis et al. as being simple to grasp 

compared to horizontal shifts.  

In this study, the participants seem to be muddled with the conception of 

transformation. For example, learner group A failed to graph the function, i.e., correctly 

𝑔(𝑥) = 6 + 2𝑥 − 𝑥2. The learners' failure to correctly graph 𝑔(𝑥) inhibited the grasp of 

1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 and 2.10 indicators of understanding. 

Consequently, the absence of these indicators makes it impossible for them to 

determine 𝑔′(𝑥). As seen by Mpofu and Pournara (2018), learners found it difficult to 

relate symbols to graphical. This notion explains the fact that these learners have 

drawn 𝑔(𝑥) incorrectly. The learners' failure to correctly draw the graph emanates from 

an underdeveloped understanding of parameters.  



 

107 

 

Complementarily, as seen by Ellis and Grinstead (2008), learners ignored the 

parameters' effects. In their study, they found that these learners believed that 

changing 𝑎 parameter does not alter the vertex location. Consequently, in this study, 

the learners did not consider the parameter ‘𝑎’ of its sign and just drew the function 

upwards. The negligence of parameter “𝑎” in quadratic is why others usually treat the 

value of “𝑎” as the same in linear and quadratics. The negligence of such 

understanding inhibited the attainment of 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 and 

2.10 indicators of understanding. As noted by Zaslavsky (1997), learners neglected 

the difference between “𝑎” in linear versus “𝑎” in quadratics.  

In a related study, Ellis, and Grinstead (2008) noted linear interference in 

quadratics as learners’ confusing parameters. Group A failed to correctly represent 

the 𝑦-intercept of the function on the 𝑦-axis and did not determine and accurately plot 

the 𝑥-intercepts. The failure to correctly plot all the critical coordinates on the Cartesian 

plane makes it difficult to understand the transformation concept as a whole (Baker et 

al., 2000). The absence of such critical points on the graph while plotting it impedes 

the understanding of reflection. This led to a limited understanding of plotting the 

graph, further leading to the narrow conception of reflection. This limited knowledge 

led learners to posit an undeveloped understanding of reflection. 

In another task, the learners worked in pairs and were required to work on 

transformation regarding the vertex. The question required them to determine the 

vertex after transforming the function from 𝑓(𝑥) to ℎ(𝑥). They were given the function 

𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16 and were required to determine the values of 𝑝 and 𝑞 after 

transforming the function ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 at a maximum value of 15 at 𝑥 = 2. Most 

learners struggled to understand the question. Amongst the learners, L16, Q21, T24 

and Z30 struggled with understanding the question. The question advanced for 

attaining 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 and 2.10 indicators of understanding. 

Therefore, the expected solution for learners to understand the vertex is shown in 

Table 4.13. 
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Table 4.13: Expected solution on learners understanding the vertex concept 

The graph of ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 has a 

maximum value of 15 at 𝑥 = 2. Determine the 

values of 𝑝 and 𝑞 

The turning point of 𝑓(𝑥): (1; 18) 

The turning point of ℎ(𝑥): (2; 15) 

∴ 𝑝 = −1 and 𝑞 = −3 

Indicators 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.6, 2.7, 
2.10, 3.1, 3.2, 3.3, 3.4 

To track learners' understanding of this question, I tracked learners L16 and Z30’s 

workings in exploring their understanding of the concept (Figure 4.13). The question 

stressed the higher level of understanding, i.e., object. However, it needed to 

acknowledge previous indicators of understanding, i.e., 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 2.5, 

2.6, 2.7 and 2.10. 

Pair A (L16 and Q21) Pair B (T24 and Z30) 

  

Figure 4.13: Learners' conceptual obstacle of transformation 

The four sampled learners attended to the task and managed to write something. 

However, their solutions are incorrect and pose some traits of understanding. For 

example, learners T24 and Z30 tried to derive the vertex form from the standard, and 

later changed it to determine the vertex form using completing the square method. 

However, delving deeper at their workings, the learners seemed to be trying to 

complete the square as they tried to factor out 2 and later divided both sides by 2 and 

then transposed 8 to the right.  The notion of completing the square meant that the 

learners did not know what they were doing due to the question format. Adu-Gyamfi 
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et al. (2019) show that learners cannot understand the information given in algebraic 

notation. For example, learners could struggle to extract the meaning of 𝑓(𝑥) × 𝑔(𝑥) >

0. Consequently, from their work, the learners seemed unsure of what they were doing 

and could not reach any conclusion with their method.  

In contrast, learners L16 and Q21 approached the question differently as they 

started by equating ℎ(𝑥) and 𝑓(𝑥). Even though the two functions are not equal, the 

learners overlooked that. The pair perceived the equal sign operationally instead of as 

a relational symbol. However, Bryd et al. (2015) assert that for success in 

mathematics, one must have an operational and relational understanding of an equal 

sign. Nevertheless, the learners’ solution indicate that the pair started to substitute 

(𝑥 + 𝑝) into the 𝑓(𝑥). The substitution of this kind meant that these learners were not 

accustomed to what they were doing as they were confused with the forms. As stated 

by Kotsopoulos (2007), learners often confuse the forms of quadratic functions, which 

impedes understanding of the concept.  

Furthermore, these learners wrote ℎ(𝑥) = −2(𝑥 + 𝑝)2 + 4(𝑥 + 𝑝) + 16 + 𝑞, 

replicating Adu-Gyamfi et al.’s (2019) idea that learners posed difficulties with 

notations. However, looking into the learners' solution, the pair stopped writing at 

ℎ(𝑥) = −2(𝑥 + 𝑝)2 + 4(𝑥 + 𝑝) + 16 + 𝑞, and started to transit 𝑓(𝑥) into a vertex form. 

However, the learner still failed to complete what he started to do. Díaz et al. (2020) 

noted that learners are holders of instrumental understanding and cannot use it in 

need. Therefore, all these conceptual obstacles inhibited the grasp of 1.1, 1.2, 1.3, 

2.1, 2.2, 2.4, 2.5, 2.6, 2.7 and 2.10 indicators of understanding. Therefore, these 

learners' understanding of transformation to determining the vertex was at a limited 

action level due to the solution that he got, i.e.,  2𝑥 − 3, which is linear and not 

quadratic. However, the pair failed to note that what they got as their solution ‘2𝑥 − 3’ 

is longer quadratic but linear. The analysis of these four learners led to the realisation 

that they have not yet attained the complete indicators in the action and process levels, 

which inhibited the grasp of 3.1, 3.2, 3.3 and 3.4 indicators of understanding.  

4.2.1.7. Graph orientation for quadratic functions 

The graph orientation looks at several characteristics when the quadratic function is 

drawn on a Cartesian plane. The graph of the orientation of a parabola delves into the 
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critical points of the function being correctly presented, the axis of symmetry, the 

maximum or minimum value of the graph, and the effects of the shifts involved with 

the function (Akhsani & Nurhayati, 2020). The graph orientation of quadratic functions 

nurtures both instrumental and relational understanding. However, while exploring 

what effects graph drawing, Sumartini et al. (2019) found that learners are more 

immersed in instrumental understanding than relational understanding. They further 

found that most learners, when asked to draw 𝑓(𝑥) = (𝑥 − 1)2 few thoughts of it as a 

shift, and the majority wanted to work with a standard form. The learners who transit 

the function from vertex into standard were to use the formula 𝑥 = −
𝑏

2𝑎
 to determine 

the vertex of the graph, which nurtured instrumental understanding. Delving into the 

results of Sumartini et al. and analysing them through López et al.’s (2016) 

understanding of quadratic function would mean that the learner posits instrumental 

understanding but failed to use it since they would have determined the vertex from 

the function without calculation.  

In this study, the graph orientation began by exploring the parabola's shape if the 

function drawn opens upwards or downwards. Understanding parameters is 

necessary to nurture a relational understanding of quadratic functions (Ozaltun Celik 

& Bukova Guzel, 2017). The shape of the graph is given by understanding the value 

of 𝑎 in the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞, or 𝑓(𝑥) = 𝑎(𝑥 −

𝑥1)(𝑥 − 𝑥2). If the value of 𝑎 is positive, that is 𝑎 > 0, then the graph opens upwards, 

and if the value of 𝑎 is negative, that is 𝑎 < 0, the parabola opens downwards (Nielsen, 

2015). The analysis of the graph orientation starts by delving at how the learners 

responded to the task where they were required to determine the standard form from 

the vertex form and then decide if the function is concave up or down.  

Most learners in this task were able to state if the graph is concave up or down. 

While some struggled with the activity, i.e., learners C5, J14, L16 and X28, most 

presented similar answers since they were working in a group (Figure 4.14). 
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Group B (C5, J14, L16 and X28) 

 

Figure 4.14: Group B's misinterpretation of the concavity of the function 

Learners were given a function in a vertex form, and they were required to decide 

if the function opened upwards or downwards. The question required them to tap into 

their prior knowledge of quadratic function forms. Pender et al. (2011) state that each 

form reveals certain properties. However, learners consequently failed to see this 

notion asserted by Pender et al. These learners struggled to decide if the function 𝑦 =

3 − (𝑥 + 2)2 is concave up or down. The difficulty emanated from the fact that the 

function was not presented in a usual format, i.e., 𝑦 = 𝑎(𝑥 + 𝑝)2 + 𝑞; instead, it was 

given as 𝑦 = 𝑞 + 𝑎(𝑥 + 𝑝)2. However, the value of 𝑎 in the question was not positive. 

While interacting with the question, the group tried to convert this vertex form into a 

standard form to decide if it opened up or down. This method explicitly asserts that 

these learners' understanding of parameters is fragmented. As said, learners are 

usually not accustomed to 𝑎 ≠ 1 (Kotsopoulos, 2007). The transition from vertex into 

standard form proved that the learners were accustomed to working with one form of 

quadratics. 

Similarly, Nielsen (2015) noted that learners will always try to work with the 

standard form rather than the others. This notion of Nielsen was replicated in this study 

as the learners wanted to transit into standard form before concluding if the function 

is concave up or down. The issue of stressing one form depicts an overreliance, and 

grounds learners' knowledge in possession of instrumental understanding. As noted 

by Skemp (1976), this is memorised understanding. However, we cannot dispute this 

kind of understanding as it serves as a ladder for attaining relational understanding. 

Exploring the learners’ understanding, I found that the group simple wrote 𝑦 = 𝑥2 +

4𝑥 + 1, neglecting the sign of parameter ‘𝑎.’ Similarly, they ignored the negative sign 

at the value of ‘𝑏.’ As such, the learners' knowledge of quadratics seemed to be at a 
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limited level of understanding of product rules and algebraic operational skills to 

simplify functions. The notion of ignoring the presence of these parameters supports 

the idea by Owen (1992), who found that learners usually assume that the absence of 

a specific parameter does not denote the function in a quadratic. Therefore, from the 

analysis, it can be noted that the learners ignored the fact that the value of “𝑎” gives 

the concavity of the quadratic. 

Moreover, other groups assumed that the value of ‘𝑎’ gives the gradient of the 

graph. The understanding these learners held regarding the importance of “𝑎” was 

also noted by Ellis and Grinstead (2008), Eraslan (2008) and Parent (2015). The group 

that held that conceptual obstacle in their discussion is captured in Figure 4.15. 

Group C (A1, AA2, B3 and Z30) 

 

Figure 4.15: Group C’s limited understanding of parameter 𝑎 

The group viewed the value of ‘𝑎’ as the function's gradient, as they discussed 

before answering the given question. I had to capture this difficulty because it posed 

conceptual obstacles in interacting with the proceeding question in the learning task. 

These learners confuse “𝑎” in the linear function with the “𝑎” in the quadratic function. 

This example conforms to what Ellis and Grinstead (2008) asserted about learners’ 

tendency to make the linear and quadratic functions have an analogy. In their findings, 

the researchers contended that learners thought of parameter 𝑎 as the gradient of the 

quadratic function. 



 

113 

 

In contrast, the effects of parameter 𝑎 in quadratics influence the shape and the 

stretching of the graph. Therefore, the group neglected the fact that we do not have a 

gradient in the quadratics function. This meant that the learners posed a limited 

understanding of the properties of quadratic and linear functions learned before 

quadratics. 

Consequently, I navigated through the sections, i.e., 4.1.1.1 to 4.1.1.7, to scaffold 

learners' understanding of quadratic functions. I found that learners tend to think about 

quadratic functions as isolated concepts. This notion of separating quadratic functions 

from other concepts was noted in the work of Parent (2015), who found that learners 

failed to conceive the relation of another concept to a quadratic function. 

Subsequently, I discovered that the conceptual obstacles in this discourse resulted 

from the failure to link quadratic functions to other concepts. As noted earlier in this 

discourse, learners relied on instrumental instead of relational understanding to tackle 

quadratic function questions.  

However, Fitzmaurice and Hayes (2020) do not dispute learners' instrumental 

understanding. They acknowledge this understanding and assert that it is essential for 

nurturing relational understanding. Hence, learners' over-dependency on instrumental 

knowledge was seen in this study, as the participants persistently relied on formulas 

and overreliance on one form of a quadratic function. These findings conform to 

Parent's (2015) results. Additionally, learners posed fragmented knowledge regarding 

the 𝑦-intercept of the function versus the 𝑦-coordinate of the vertex. As a result, 

learners' understanding of the 𝑦-intercept of the function and the 𝑦-coordinate of the 

vertex seemed to pose severe conceptual obstacles. 

Moreover, the participants seem to lack relational understanding of an equal sign 

and their knowledge of arithmetic was fragmented. Furthermore, I found that learners 

thought that the axis of symmetry is a number and not a function, hence posing a 

relational conceptual obstacle of the line of symmetry. Furthermore, I found that 

interference of knowledge of linear functions impeded learners' understanding of 

quadratic functions. As noted by Ozaltun Celik and Bukova Guzel (2017), their 

participants experienced the same conceptual obstacle pertaining to parameter 𝑎. 
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Similarly, Ellis and Grinstead (2008) noted that learners identified the parameter 𝑎 as 

the slope of the function. 

The analysis and discussion showed that some conceptual obstacles that impede 

learners' understanding of quadratic functions were treating two different functions as 

equivalent. Moreover, learners failed to note the effects of parameter 𝑎 in the quadratic 

functions. As seen by Subani et al. (2022), learners thought that changing parameter 

𝑎 changes the y-intercepts. Thus, this was a conceptual obstacle held by the 

participants in the works of Subani et al. Therefore, this conceptual obstacle was 

replicated in this study, as learners assumed that altering parameter 𝑎 affects the other 

parameters. Consequently, presented with these conceptual obstacles so far led to 

the realisation that learners' knowledge is at a disequilibrium state between graphical 

and algebraic thinking. Therefore, the algebraic and graphical disequilibrium state 

inhibited the full attainment of the action, process, and object indicators of 

understanding.  

4.2.2. Classroom discussions 

The classroom discussion phase, a tenet of the ACE teaching cycle, was implemented 

during the use of the learning unit. The unit was compiled using a curriculum 

assessment policy statement, assessment policies for Grade 12, and previous 

question papers for mathematics, thus interacting with the learning unit in the 

classroom during the activities phase. As a result, classroom discussion was informed 

by the underdeveloped conceptual understanding observed during the activities 

phase. The classroom discussions involved learner-learner, small group, teacher-

learner, and whole class discussions. These classroom discussions sought to allow 

learners to reflect on the learning process. Borji et al. (2018) noted that the classroom 

discussion would enable learners to reflect on the task they interacted with in the 

activities phase. In this phase, I observed and recorded the instances where learners 

struggled to comprehend quadratic functions. The participants interacted with the 

tasks that were non-directive, as the activities were designed from the perspective of 

a constructivist view. The learning activities afforded learners with gains to 

comprehend quadratic functions fully. During the classroom discussions, I was 

awaiting the “aha!” moments to guide the phase, as asserted by Borji et al. Therefore, 
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all this was done to gain more insights into learners' understanding of quadratic 

functions. 

While learners interacted with the various concepts of quadratic functions, they 

demonstrated their understanding in the activities phase. As a result, I used the 

classroom discussion phase to delve deeper into learners' conceptual understandings 

of quadratic functions through their conversations about the 𝑦-coordinate of the vertex 

and 𝑦-intercept concepts. Conceptual understanding the vertex and the 𝑦-intercept of 

the function persistently impedes learners' full grasp of the quadratic function concept. 

As noted by Ellis and Grinstead (2008), learners posed a conceptual obstacle with 

vertex. The participants believed that the turning point was impacted by parameter 𝑎. 

In a related study, Childers, and Vidakovic (2014) found that learners' understanding 

of vertex was fragmented. These fragmentations were due to their comprehension of 

the vertex as a maximum or minimum in relation to the axis of symmetry, as a turning 

point, as an intercept, and as an intersection. 

Consequently, to mitigate these constraints in comprehending vertex, I used the 

APOS theory to delve deeper into learners' conceptual understanding of the concept. 

Therefore, to delve deeper, I followed the work of Childers and Vidakovic to explore 

the silent issues pertaining to learners' knowledge of vertex and 𝑦-intercept of the 

function. Childers and Vidakovic proposed a helpful notion for understanding vertex. 

They suggested that exploring learners' personal meanings of the vertex is beneficial 

to help them fully comprehend it (Childers & Vidakovic, 2014). Therefore, I adopted 

this notion proposed as Childers and Vidakovic in this study to delve deeper into 

learners' understanding of vertex and 𝑦-intercept of the function. 

The classroom discussions phase is divided into learner-teacher, learner-learner, 

and teacher-learner discussions. The classroom discussion involves the learners' 

understanding of the following concepts: understanding the vertex, not understanding 

the vertex, and the difficulties with the 𝑦-intercept. To understand the discussions more 

deeply, I have captured the learners' tasks that sparked the discussions with the 

expected solution to the question. 
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4.2.2.1. Understanding the vertex 

The vertex analysis looked at how the learners working in pairs attended to the 

problem. The learners were given three functions, i.e., 𝑓(𝑥) = 2 + 𝑥 − 𝑥2, 𝑔(𝑥) =

−3(𝑥 − 4)2 + 100, and ℎ(𝑥) = (𝑥 − 1)(𝑥 − 3). From these functions, they were 

required to determine the vertex and the 𝑦-intercept. However, in this section, I 

explored learners' understanding of determining the vertex on ℎ(𝑥) = (𝑥 − 𝑔1)(𝑥 − 3). 

I chose to analyse and discuss their understanding of the vertex on the factored form 

as most participants thought it was not a quadratic function.  As noted by Mutambara 

et al. (2019), most participants posed a conceptual obstacle with the factored form as 

they confused it with the vertex form. This view in the study by Mutambara et al. is 

similar to the findings by Kotsopoulos (2007), that learners often think that quadratic 

functions are given in one form, that is, the standard form instead of vertex or factored 

form. However, learners posed an instrumental understanding of the standard form 

even though they preferred it. For example, the participants in the study by 

Kotsopoulos thought that 𝑥2 + 3𝑥 + 7 = 𝑥 + 4 was not in the standard form. 

Consequently, such conceptual obstacles imply that the participants posed an 

underdeveloped knowledge of the forms of quadratic functions.  

Therefore, it is from the literature that I delve deeper into learners' understanding 

of the vertex from the factored form. Parent (2015) noted that various quadratic forms 

reveal critical points related to a function. For example, the factored form indicates 𝑥-

intercepts of the function. I needed to explore learners' understanding of vertex from 

the factored form. The question demanded that learners exhibit higher indicators of 

understanding: action, process and object. In this study, learners were given a function 

in a factored form and were required to determine the vertex of the function. The 

expected solution for understanding the vertex is captured in Table 4.14. The question 

nurtured the attainment of 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3 and 3.4 indicators of 

understanding. 
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Table 4.14: Expected solution on understanding the vertex 

ℎ(𝑥) = (𝑥 − 1)(𝑥 − 3)  

 

ℎ(𝑥) = 𝑥2 − 4𝑥 + 3  

𝑎 = 1; 𝑏 = −4 

𝑥 = −
𝑏

2𝑎
 

𝑥 = −
(−4)

2(1)
= 2 

Substitute 𝑥 = 2 into ℎ(𝑥) 

ℎ(2) = (2)2 − 4(2) + 3 = −1  

∴ 𝑣𝑒𝑟𝑡𝑒𝑥 (2; −1) 

Indicators 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3, 
3.4 

Indicators 1.1 

 

Indicator 1.5 

Indicator 1.5.1 

 

 

Indicator 1.5.2 

 

Indicator 1.5.3 

Learners interacted with the question in pairs, and some managed to give the 

correct vertex of the function. Consequently, finding the vertex was easy for learners 

T24 and W27. The learners determined the correct vertex of the function, and their 

answer is shown in Figure 4.16. The learners were purposeful sampled due to their 

answers to the question as they managed to demonstrate understanding of the vertex. 

However, the purposive sampling was not necessarily on the solution's correctness, 

but the notions proposed by Childers and Vidakovic (2014) to delve deeper into the 

answer to explore the silent issues pertaining to learners' conceptual understanding of 

vertex as they discussed while working on the solution. 

Pair C (T24 and W27) 

 

Figure 4.16: Conceptual understanding the vertex of the factored form 
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The learners interacted with the question and determined the correct answer for 

the vertex of the function. The learners started by writing the correct formula to 

determine the 𝑥-coordinate of the vertex as 𝑥 =
−𝑏

2𝑎
, thus this was a correct start for 

determining the vertex as they cited the correct formula. The learners' citation of the 

correct formula exhibited procedural flexibility. Rittle‐Johnson (2017) defines 

procedural flexibility as knowing more than the procedures and using them adaptively. 

Thus, this fashion is bidirectional as the procedures lead to subsequent procedural 

knowledge. Procedural flexibility goes beyond instrumental as it is intertwined with 

relational understanding (Rittle‐Johnson, 2017). This is achieved as understanding the 

vertex strengthens the comprehension of the axis of symmetry. Therefore, learners 

attaining a full grasp of vertex implies that they have also understood the axis of 

symmetry. As a result, this is the bidirectional nature of the concept. Delving deeper 

into the learners' work, the participants transitioned from the factored form into the 

standard form. The learners started by simplifying ℎ(𝑥) = (𝑥 − 1)(𝑥 − 3) into 

ℎ(𝑥) = 𝑥2 − 3𝑥 − 𝑥 + 3 and later simplified to ℎ(𝑥) = 𝑥2 − 4𝑥 + 3. Yet. This transition 

was necessary but conformed to Kotsopoulos (2007) findings that learners usually 

prefer using the standard form over the vertex or factored form. Nevertheless, the 

transition was necessary to conform to the formula cited in the opening of their work 

which is 𝑥 =
−𝑏

2𝑎
. Thus, learners transitioning from factored to standard form 

demonstrated competency as they would not know the formula alone but also gained 

the conceptual meaning of the vertex.  

Subsequently, the learners could correctly transition from factored into standard 

form after determining the values of 𝑎 = 1 and 𝑏 = −4. Closer look into the solution 

strategy, it can be noted that the learners even determined the value of 𝑐 = 3, which 

is not necessary for the formula of 𝑥 =
−𝑏

2𝑎
 but they showed strategic competence with 

the formula. Groves (2012) states that strategic competence is the ability to solve 

mathematical problems. Nevertheless, the learners were operating in an adaptive 

reasoning state (Groves, 2012), as in their substitution, they only substituted the 

values of 𝑎 and 𝑏, respectively. Thus, from their solution, the pair could note that they 

are determining intercepts, not necessarily solving for 𝑥. This skill sets the link 

between equations and functions (Knuth, 2000). Knuth found that most learners 
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had a limited understanding of the connection between equations and graphs. 

However, these findings were avoided in this study as learners T24 and W27 

correctly determined the intercept instead of the value of 𝑥 only. Thus, if the pair 

determined 𝑥 only, it would have meant that they were determining the axis of 

symmetry, replicating what Childers and Vidakovic (2014) found. As they found 

that some thought that the vertex is the axis of symmetry (Childers & Vidakovic, 

2014). Moreover, I have transcribed the two sampled learners' discussions regarding 

the vertex concept. Their discussion is captured in Table 4.15 below. 

Case 1: T24, W27, and T-Math’s conversation about determining the vertex 

Table 4.15: Conversation between T24 and W27 about vertex 

1. T24: We have to determine the equation of the line of symmetry W27. 

2. W27: Alright, so we are going to use this formula 𝑥 = −
𝑏

2𝑎
? 

3. T-Math: Why do you have to use this formula = −
𝑏

2𝑎
 instead of 𝑥 =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
? 

4. T24: Sir!!! That’s not the correct formula for the 𝑥 value of the axis of symmetry. No, we need the 

𝑥-intercept of the vertex and not the roots of the function. 

5. T-Math: Okay. Then proceed. 

6. W27: Sir… Please don’t trick us. We need to have the equation in the standard form, and then 

after, we can have the values of 𝑎, and 𝑏. 

7. T-Math: What about 𝑐? 

8. W27: Sir, we cannot substitute 𝑐, since our formula requires the values of 𝑎 and 𝑏 only.  

T24 started writing on the paper… 

9. T24: (While writing on the paper) … Our 𝑥-intercept of the vertex is 𝑥 = −
𝑏

2𝑎
= −

(−4)

2(1)
= 2. Then 

with 𝑥 = 2, we can now work out to determine the 𝑦 value of the vertex by substituting back into 

the function. 

10. W27: Our 𝑦 = −1. Therefore, the vertex of ℎ(𝑥) = (𝑥 − 1)(𝑥 − 3) is (2; −1). (Pointing to the 

answer with a pen). 

The answer determined was correct. 

From the learners' discussion in Table 4.15, one can tell that the learners have 

attained 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3 and 3.4 indicators for understanding. 

Therefore, attainment of these indicators advanced for learners to exhibit adaptive 
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reasoning of the vertex concept. As noted by Groves (2012), learners operating in this 

state of understanding can reflect, explain and justify their arguments. Consequently, 

their exhibiting adaptive reasoning based on the precedent genetic decomposition 

meant that they had attained action-process and process-object conception of a 

vertex. Hence, their arguments posit strong adaptive reasoning with the vertex, even 

if challenged through my scaffolding. Calor et al. (2022) assert that scaffolding in 

groups is an important skill to foster a higher understanding of the concept to be 

learned. Subsequently, I used the scaffolding approach to enable a higher 

understanding of the vertex concept, and the pair did not seem to be confused or feel 

that their thoughts were incorrect.  As a result, through scaffolding, it is noted in line 3, 

when I asked them why they are using 𝑥 =
−𝑏

2𝑎
 instead of 𝑥 =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, the learners 

are able to justify their choice of the formula in line 4. Thus, such justification gives 

evidence of their mathematical proficiency in the vertex.   Therefore, the learners can 

convince you as the third person that they have procedural flexibility of the vertex 

concept. In this task of the vertex, they have managed to work and reach the final 

correct answer. However, challenging the pair in which formula can be used to 

determine the vertex, they cited a correct one and gave reasons for using it. Such 

exhibited the presence of procedural, conceptual, strategic competence and adaptive 

reasoning of vertex conception. Therefore, such understanding implies that the 

learners do not necessarily possess instrumental understanding (Skemp, 1976) but a 

coherent whole mental structure that is mathematical proficiency of vertex concept 

(Grove, 2012). Therefore, mathematical proficiency means that the learners have a 

schema for the axis of symmetry and vertex. Therefore, such proficiency is called 

procedural flexibility (Rittle‐Johnson, 2017). The learners' discussion indicate that the 

pair knew the use of these formulas, i.e., = −
𝑏

2𝑎
 and 𝑥 =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 as seen in line 3. 

Therefore, this exhibited procedural flexibility of the learners when determining the 

vertex of the function (Rittle‐Johnson, 2017). The skills of knowing which formula to 

use and why that learners justify and posed developed knowledge of equation and 

function (Knuth, 2000). 

Consequently, the participant exhibited 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3 and 

3.4 indicators of understanding. Thus, the pair had developed an action, process and 
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object conception of the vertex. In lines 9 and 10, the two learners knew what to do 

after they had determined the 𝑥-value of the vertex, and again this denotes the 

development of strategic competence of the vertex, as the learners were able to 

determine the ℎ(2) as ℎ(2) = (2)2 − 4(2) + 3 = −1, thus, they did stop there at the 

values of 𝑥 = 2 and 𝑦 == −1, but they determined the intercepts as (2; −1). 

Consequently, such procedural flexibility denotes their attainment of mathematical 

proficiency, as they have demonstrated procedural, conceptual, strategic competence, 

and adaptive reasoning of vertex conception. Therefore, skills exhibited in the answer 

positioned the two sampled learners in a schema level of understanding of the vertex. 

The learners demonstrated a schema of an axis of symmetry and later connected the 

axis to the vertex. From the learners' discussion, it can be seen that they did not 

replicate the conceptual obstacle identified by Childers and Vidakovic (2014) regarding 

the values of 𝑐. In their study, Childers and Vidakovic found that learners believed that 

the vertex's location was affected by the value of 𝑐. As a result, the conceptual obstacle 

identified by Childers and Vidakovic was not replicated in this study as the learners 

did not substitute the value of 𝑐 in the formula 𝑥 =
−𝑏

2𝑎
 while determining the 𝑥 

coordinate of the vertex. 

4.2.2.2. Conceptual obstacle of the vertex of the standard form 

However, while observing other learners, I was puzzled by how P20 and K15 

understood the concept of the vertex. To demonstrate not understanding of the vertex, 

I transcribed the conversation between K15 and P20’s discussion about the vertex. 

The learners were interacting with 𝑓(𝑥) = 2 + 𝑥 − 𝑥2  to determine the vertex. I have 

presented the expected solution in Table 4.16. The function was given in a standard 

form of a quadratic function. Parent (2015) noted that learners prefer the standard over 

the vertex and factored form. Thus, from Parent’s view, learners typically find it easy 

to work with the standard. Conversely, the pair in the study posed conceptual 

obstacles while they were given the standard form. Hence, the expected answer for 

determining the vertex from the standard form is captured in Table 4.16. The question 

advanced for attaining 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3 and 3.4 indicators of 

understanding.  
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Table 4.16: Expected solution on learners' conceptual understanding of the turning point 

𝑓(𝑥) = 2 + 𝑥 − 𝑥2  

𝑎 = −1; 𝑏 = 1 

𝑥 = −
𝑏

2𝑎
 

𝑥 = −
1

2(−1)
=

1

2
 

Substitute 𝑥 =
1

2
 into 𝑓(𝑥) 

𝑓 (
1

2
) = 2 + (

1

2
) − (

1

2
)

2

=
9

4
  

∴ 𝑣𝑒𝑟𝑡𝑒𝑥 (
1

2
;
9

4
) 

Indicators 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3, 
3.4 

 

Indicator 1.5 

Indicator 1.5.1 

 

 

Indicator 1.5.2 

 

Indicator 1.5.3 

Moreover, I also presented their solution in Figure 4.18. From the learners' work, 

two conceptual obstacles surfaced, which are demonstrated as a lack of 

understanding of the 𝑦-intercept and vertex. 

Pair D (K15 and P20) 

 

Figure 4.17: Learners conceptual obstacle the vertex on a standard form 

The learners interacted with the question in a standard form of the quadratic 

function, as put by Parent (2015) that the standard form reveals the 𝑦-intercept of the 

function. Delving deeper into the learners' solution, the pair started by writing the value 

of 𝑐 = 2, and later wrote (0; 𝑐) → (0; 2). Such a blunder while determining the vertex 

instead of opting for the 𝑦-intercept is similar to the findings by Childers and Vidakovic 
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(2014), who found that learners viewed the vertex as the 𝑦-intercept and could not 

determine it. 

Similarly, in this study, the learners viewed the vertex as the 𝑦-intercept and were 

unable to compute it as they kept on cancelling and writing incorrect methods. For 

example, the pair wrote the value of 𝑐 = 2 and cancelled their method. Consequently, 

conceptual obstacle inhibited the learners' procedural flexibility in determining the 

vertex. The inhibition of procedural flexibility impedes attaining adaptive reasoning as 

they fail to justify their answer (Groves, 2012). Subsequently, the absence of adaptive 

reasoning is the reason that these learners were writing and cancelling. Additionally, 

the pair cited the formula of the quadratic function as 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 and substituted 

the values of 𝑎 = −1, 𝑏 = 1 and 𝑐 = 2 into the formula and later cancelled what they 

wrote. The learners' work posit evidence that the pair lacked mathematical proficiency 

in the vertex. The absence of proficiency in understanding the vertex explains that the 

learners cited incorrect formulas, which posed an insufficient mathematical connection 

between equations and functions (Wijayanti & Abadi, 2019). Furthermore, the learners 

failed to correctly tap into procedural flexibility of using the formula 𝑥 =
−𝑏

2𝑎
. This failure 

to use the correct formula is seen from the step where the learners cited the quadratic 

formula that is 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 instead of 𝑥 =

−𝑏

2𝑎
. Thus, such misconceived 

understanding of the usage of formulas impedes the strategic competence of these 

learners (Kilpatrick et al., 2002). Conversely, due to a lack of adaptive reasoning and 

strategic competence, the learners brought back the value of 𝑐 = 2, to be substituted 

into 𝑓(𝑥) = 2 + 𝑥 − 𝑥2 as 𝑓(2) = 2 + (2) − (2)2 = 0, and later, determine the vertex as 

(0; 2), even though this was the solution that was cancelled in the first steps of the 

question. Even so, their answer was incorrect; the pair acknowledged that they were 

determining the intercepts by writing the vertex as (0; 2). As a consequence, exhibiting 

such skill in writing the final solution in an intercept format support the idea posed by 

Knuth (2000) of understanding the connection between functions and equations. 

Therefore, to extract the silent issues on the learners' answer, I transcribed their 

discussion about the vertex in Table 4.17.  
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The learners’ discussions about the concept of vertex began with the participants 

showing fragmented knowledge of the standard form of a quadratic function. Learners 

K15 and P20 got confused with the standard form when they wanted to determine the 

vertex of the function. The pair was confused with the vertex and the 𝑦-intercept of the 

function. Their discussion started from the debate on whether the form was in the 

standard form or not. The learners’ discussion is captured in Table 4.17 below as 

transcribed. In the latter part, I had to discuss with learner P20 to interrogate his 

understanding of the vertex form. 

Case 2 below presents the conversation between P20 and K15 about the 

vertex. 

Table 4.17: Conceptual obstacle of the vertex concept 

1. K15: Well, is not the last one our vertex… (Pointing to the constant of the function) That would 
indicate the vertex. We have a vertex. That would be the value of 𝑐.  

2. P20: I’m not following what you are saying. What do you mean? 
3. K15: How do you determine the value of 𝑐…. Oh, eix, I mean the vertex. 
4. P20: With the area of symmetry. 

5. K15: You mean the axis of symmetry, 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. 

6. P20: Yes, that is correct….  
7. K15: With the axis of symmetry, right, but 𝑐 be the other half of the value neh…. 

8. P20: You mean this…. (Pointing to the y-intercept of the function 𝑓(𝑥) = 2 + 𝑥 − 𝑥2.) 
9. K15: Ayiii, not that one…. 
10. P20: Oh, the 𝑦-intercept neh…. 
11. K15: Yes, that one…. 
12. P20: That is what it has to go through… (While pointing at the 𝑦-intercept that it goes through 

the 𝑦-axis).  
13. K15: I think that will help us find the axis of symmetry by substituting it into the function (While 

perusing her book pages). Oh, now I see what you were talking about (Stopping the paging and 
putting his hand down a little bit convinced). 

14. P20: So, the one for 𝑓(𝑥) = 2 + 𝑥 − 𝑥2  the 𝑦-intercept of the vertex is 𝑞 = 2 (Indicating that the 
value of 𝑞 is 𝑐).  

15. K15: Yeah…. I agree with that. 
16. P20: Our vertex is (0; 2) (Pointing at his solution, see Figure 42). 
17. K15: Okay…. 

They ended up with an incorrect answer for the vertex. 

The opening statement by learner K15, “Well, is not the last one our vertex… 

(Pointing to the constant of the function) that would be indicating the vertex. We have 

a vertex. That would be the value of 𝑐…” demonstrates a lack logical thought about 

the vertex. Moreover, the pointing of 𝑐 as the vertex indicates a misconceived 

conception of the 𝑦-intercept. Thus, failure to know the meaning of parameter 𝑐 inhibits 
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the attainment of the vertex concept. Consequently, the inhibition is caused by the 

existing schema of the 𝑦-intercept that constrained the attainment of a vertex. Thomas 

(2008) noted that some of our conceived schemas either afford or constrain the 

association of new concepts. Thus, this notion was seen in the discussion that the 

learners' preconceived schema of 𝑦-intercept constrains the understanding of vertex. 

The conversation between the learners above shows an undeveloped limited action 

conception of adaptive reasoning (Groves, 2012), which constrains the understanding 

of the 𝑦-intercepts and the vertex. The discussion that the learners had inhibited their 

algebraic reasoning of quadratic functions. Damayanti et al. (2019) noted that 

algebraic reasoning is used to generalise arithmetic algorithms to notice actual 

patterns. 

Conversely, the pair failed to reason algebraically as they did not notice the 

connection of intercepts and vertex. These learners failed to correctly tap into their 

reasoning capacity as their strategic competence of determining the vertex was 

undeveloped. The undeveloped understanding of the vertex resulted from an inability 

to use the correct procedure which impedes the grasp of adaptive reasoning. The 

learners' lack of procedural flexibility led to affordance in executing a wrong procedure 

steered conceptual obstacle of the vertex. Furthermore, in line 3, learner K15 changed 

the focus of the question to determine the value of ‘𝑐’ instead of the vertex, for the 

attainment of the object conception of the vertex. Thus, such meandering results 

impede the processes responsible for nurturing the understanding of vertex. 

Schoenfeld (1988) noted that learners' prior knowledge posed fragmentation to 

attaining new concepts. 

Consequently, in this study, the pair developed an inaccurate schema for the 𝑦-

intercept, which impeded the vertex concept. Furthermore, in line 15, the learner 

wanted to use the quadratic formula to determine the vertex. Hence, using the 

quadratic functions constrain the understanding of the vertex. Subsequently, the 

learners' skill of opting for the quadratic formula meant that they did not comprehend 

when the formula should be used. Thus, they must first understand the question to 

clear the learners' misconceived thoughts. Intaros et al. (2014) state that the key to 

understanding concepts is mitigating conceptual obstacles in the question asked. 
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As a result of these misconceived conceptions of vertex, it explains why the 

learners in line 4 referred to the axis of symmetry as the area. As Nielsen (2015) noted, 

the word area was also used by learners to refer to the axis of symmetry incorrectly; 

instead, they used area of symmetry. In contrast, learner K15 corrected the word but 

cited an incorrect formula. Therefore, the learners posed a fragmented instrumental 

understanding of the quadratic formula. Díaz et al. (2020) noted that learners often fail 

to use instrumental understanding when required, even if they have it. This indicated 

that their conception of vertex was undeveloped as they would the two terms 

interchangeably, i.e., area and axis. In line 14, the learners equated 𝑞 and 𝑐, neglecting 

the parameters’ differences. Based on the APOS theory, their level of understanding 

is at the undeveloped action conception. Therefore, these learners’ conceptual 

obstacles inhibited the full attainment of 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3 and 

3.4 indicators for understanding. Consequently, due to these conceptual obstacles, I 

had to discuss with learner P20 regarding the understanding of the vertex. 

4.2.2.3. The learner-teacher discussion about the vertex and 𝑦-intercept 

Learner P20 was purposively sampled for the one-on-one discussion session due to 

his conversation with learner K15. The criteria to sample the learner was due to the 

fact that the participant posed severe conceptual obstacles of the concept of vertex 

and 𝑦-intercept. Therefore, to delve deeper into the learner’s understanding of the 

vertex and 𝑦-intercept I had to scaffold the participant. Contrary to the traditional 

approach to learning mathematics, which provides grades which make no sense to 

the learners (Zimmerman et al., 2011) I employed a different approach where the 

grades are categorised by the APOS tenets to indicate learners level of understanding. 

Subsequently, such an approach posed learners with meaningless grades that 

participants could not understand. In this study, I employed the APOS approach, which 

uses classroom discussion to allow learners to reflect on their conceptual obstacles 

(Arnon et al., 2014).  

In this section, I adopted the self-reflection phase, a tenet of the cognitive model 

of self-regulation. Zimmerman et al. assert that self-reflection involves the participants' 

responses and includes self-evaluative judgements and adaptive self-reactions to 

learning mathematics. Thus, in this study, I used the self-reflective process to nurture 
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learner P20's understanding of vertex and 𝑦-intercept. I sought to improve his/her self-

reflection responses through conceptual obstacle correction. Thus, I wanted learner 

P20 to self-reflect more effectively on his conceptual obstacles of vertex and 𝑦-

intercept through a one-on-one discussion. Subsequently, the discussion with learner 

P20 was guided by these questions below: 

• What do you understand about the concept of vertex? 

• How is the vertex different from the 𝑦-intercept 

• How do you find the 𝑦-intercept of any quadratic function”? 

• How do you find the 𝑦-intercept? 

• Given 𝑔(𝑥) = −3(𝑥 − 4)2 + 100, can you determine 𝑦-intercept? 

The one-on-one discussion began by making the participant aware that he was in 

this process, not necessarily because he wrote correct or incorrect solutions while 

determining the vertex. It was vital for me to allude to this since I did not want to 

demotivate the learner. The learner was given the function, i.e., 𝑔(𝑥) = −3(𝑥 − 4)2 +

100, and was required to determine the 𝑦-intercept and the vertex of the function. The 

learner was given the function in a vertex since he posed conceptual obstacles with 

the standard form while working in pairs. The expected solution for the two questions 

is captured in Table 4.18. 

Table 4.18: Expected solution the y-intercept and the vertex on a vertex form 

Determining the 𝑦-intercept: 𝑔(𝑥) = −3(𝑥 −
4)2 + 100  

𝑦-intercept 

Let 𝑥 = 0 

𝑦 = −3(0 − 4)2 + 100  

𝑦 = −3(−4)2 + 100 = 52  

∴ 𝑦-intercept (0; 52) 

Indicator 1.1, 1.2, 1.6 

 

Indicator 1.2.1 

Indicator 1.2.2 

Indicator 1.2.3 

Indicator 1.2.4 

Determining the vertex: 𝑔(𝑥) = −3(𝑥 − 4)2 +
100 

∴ 𝑣𝑒𝑟𝑡𝑒𝑥 (4; 100)  

Indicator 1.1, 1.6, 2.1, 2.2, 2.3, 2.6 

 

Indicator 1.6 
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Therefore, they interacted with the questions and managed to present their 

answers. Thus, their solutions are captured below as the interview involved a 

conversation based on the learner’s solution, i.e., Figure 4.18. 

Determining the 𝒚-intercept Determine the vertex 

  

Figure 4.18: The solutions of learner P20 leading to the one-on-one 

The learner interacted with the question and was able to give the 𝑦-intercept but 

failed to determine the vertex of the function, as noted by Hattikudur et al. (2012) that 

understanding and graphing the 𝑦-intercept involves concentrating on one variable as 

the other is zero. Therefore, this notion given by Hattikudur was achieved by learner 

P20 as the learner was able to set 𝑥 = 0 as also noted by Hattikudur as the necessary 

step to begin with. While determining the 𝑦-intercept, learner P20 managed to exhibit 

the 1.2 indicators of understanding. The learner started by letting 𝑥 = 0, which was an 

excellent start to the question. Moreover, the learner substituted 𝑥 = 0 into the function 

as 𝑦 = −3(0 − 4)2 + 100 = 52. Thus, the operational skill of letting 𝑥 = 0, and then 

managing to substitute into the function as 𝑦 = −3(0 − 4)2 + 100 implied that the 

learner posits strategic competence in determining the 𝑦-intercept. Groves (2012) 

noted that strategic competence is an operational skill in mathematical computing 

problems. Additionally, the learner concluded the statement by giving the intercepts of 

the turning point as (0; 52). This was a good indication that the learner has developed 

procedural flexibility in determining the 𝑦-intercept. Rittle‐Johnson (2017) noted that 

learners possessing procedural flexibility had attained instrumental and relational 
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understanding. This procedural flexibility is seen from the perspective that the learner 

has a schema for functions and equations instead of ending his answer at 𝑦 = 52, 

which limits it to the equation. This means that the learner posed adaptive reasoning 

(Groves, 2012) of determining the 𝑦-intercept as he could show the logical thought of 

intercept by writing (0; 52). This procedural flexibility was noted in learner P20 as the 

learner used correct procedures to compute the 𝑦-intercept, which exhibits 

instrumental understanding and advanced relational understanding by writing in 

intercept format.  

Conversely, the learner struggled to determine the vertex, although the function 

was given in the vertex form. The learner started by transitioning from the vertex form 

into the standard form. This skill inhibited the conception that Parent (2015) held that 

the vertex form reveals the vertex of the function. However, the learner managed to 

get the standard form of the function as 𝑦 = −3𝑥2 + 24𝑥 + 52. The learner was 

supposed to have noted that 𝑐 = 52 is not the 𝑦-coordinate of the vertex but the 𝑦-

intercept. Thus, notion disputed the understanding that the learner posed with vertex 

form. The findings from learner P20 on determining the vertex replicated what Díaz et 

al. (2020) found. Díaz et al. found that learners posed undeveloped instrumental 

understanding and failed to use the knowledge if required. Moreover, the one-on-one 

discussion was transcribed. The transcribed discussion between learner-teacher is 

captured in Table 4.19 about the understanding of the 𝑦-intercept and vertex. 
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Case 3 below presents the one-on-one discussion between P20 and T-Math 

about the vertex 

Table 4.19: The one-on-one discussion between learner-teacher 

1. T-Math: What do you understand about the concept of the vertex? 
2. P20: mmmhhhh…. A vertex is a…. is not the 𝑐, I mean the vertex… (While trying to think). It is 

the point at the maximum of the graph. 
3. T-Math: Okay…. You don’t want to expand your concept about the vertex? 
4. P20: Yes… a vertex is a maximum of the graph. 
5. T-Math: Okay. Then how is the vertex different from the y-intercept? 
6. P20: The vertex is the maximum, and the 𝑦-intercept is the 𝑦-intercept (While nodding his head). 

7. T-Math: Okay. Then how do you find the 𝑦-intercept of any quadratic function? 

8. P20: You need to find 𝑦 first and substitute from the standard form. 
9. T-Math: What do you mean? Can you demonstrate what you are saying using this function 

𝑔(𝑥) = −3(𝑥 − 4)2 + 100? 
10. P20: Yes… (He quickly took the paper which was on the Table and started writing) 

I gave him the space to write while following what he was writing see Figure 43. 

11. P20: Here, Sir…. 
12. T-Math: Okay. If I would say now determine the vertex, what will you do? 
13. P20: mmmhhhh…. Isn’t that you supposed to have the standard first? Yes, the standard form 

first, and then you can find the vertex.  
14. T-Math: Okay. 

From the transcribed one-on-one discussion, it can be noted that P20 is confused 

about the concept of vertex and the y-intercept. While trying to explain the concept of 

the vertex, he only stated one side of the definition: the maximum. As Childers and 

Vidakovic (2014) noted, the learner also thought that the vertex was referring to the 

maximum value of the graph. The word “maximum” is correct; it shows a limited 

understanding of the vertex and is not grounded. The learner ignored that the vertex 

can also be the minimum of the function. 

Consequently, limiting the concept to one view demeans the relational meaning of 

the concept (Childers & Vidakovic, 2014). This notion of viewing the vertex as the 

maximum indicates that the learner’s understanding of the parameter is fragmented. 

Moreover, the learner is over-reliant on the standard form and does not acknowledge 

that the other form can be used. This overreliance impedes the full grasp of the 

concept, as Kotsopoulos (2007) noted. Therefore, this notion of being over-dependent 

on one form inhibits the full development of 1.1, 1.2, 1.6, 2.1, 2.2, 2.3 and 2.6 indicators 

for understanding. This is why his work in Figure 4.20 was stuck as the learner tried 

to transit from vertex form into a standard form to determine the vertex. The learner 
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failed to write down the vertex correctly, although he managed to determine the 𝑦-

intercept. Therefore, it cannot develop fully into the action conception, hindering the 

development of the other levels of understanding. Consequently, the learners' 

understanding of the vertex and 𝑦-intercept seem to cause conceptual obstacle among 

learners persistently. 

However, navigating through the activities phase and classroom led to the 

realisation that learners' understanding of quadratic functions is fragmented. The 

learners' knowledge of being fragmented was due to their conceptual obstacle of 

range, intercepts, vertex, and transformation of quadratic functions. Similarly, these 

conceptual obstacles conform to Eraslan (2005) findings that learners have difficulty 

grasping the intercepts, vertex, and transformation. Eraslan found that learners 

struggled to explain the mathematical reason behind the horizontal and vertical shifts. 

The same findings were reached in a related study by Zazkis et al. (2003), which noted 

that learners struggled to give mathematical reasons to explain the transformation of 

𝑦 = 𝑥2 into 𝑦 = (𝑥 − 3)2 or 𝑦 = 𝑥2 − 3. The same question was posed in a study by 

Eraslan, which was found that instead of the participants giving the mathematical 

reasons, the learners wanted to transit the function 𝑦 = (𝑥 − 3)2 from the vertex form 

to the standard form. Thus, such a method chosen by the learner provided enough 

reasons that the learner was over-reliant on the standard form. 

The analysis and discussion from the activities phase informed classroom 

discussions and the unstructured interview session. Arnon et al. (2014) noted that the 

activities phase informs the classroom discussion phase. From the activities phase, 

learners seem to pose severe conceptual obstacles in grasping the full attainment of 

the quadratic function. Analysis and discussions revealed that the learners' 

understanding of the range, intercepts, vertex, and function transformations posed 

conceptual obstacles. These conceptual obstacles inhibited learning quadratic 

functions entirely. As Livy and Vale (2011) noted, learners must develop their 

mathematical structures and capacity to deconstruct concepts. These skills allow them 

to make connections within a mathematical concept. Therefore, if the links are made 

correctly, the learner will not confuse the vertex and the 𝑦-intercept of quadratic 

functions. As noted by Nielsen (2015), learners thought that the 𝑦-intercept was the 

vertex of the function, which impeded the attainment of the two concepts fully. 
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Consequently, analysing the findings from the study by Nielsen from the notions 

of Livy and Vale would mean that these learners posed underdeveloped knowledge of 

mathematical connections and an inability to deconstruct concepts. Consequently, this 

led to learners' lack of procedural flexibility. These notions, laid by Livy and Vale, are 

replicated in this study as the learners treated the understanding of vertex and 𝑦-

intercept in isolation instead of as a coherent whole to build a more extensive mental 

structure, i.e., quadratic functions. As a result, I wanted to strengthen learners' 

understanding of quadratic functions through the exercise phase with the findings from 

activities and classroom discussions. 

4.2.3. Exercises 

In this phase, an exercise (test) was used to explore the impact of the activities and 

classroom discussions after the participants interacted with the learning tasks. 

Learners were given an exercise (test) to reinforce the activities and classroom 

discussion phases. Borji et al. (2018) state that the exercise task has to be fairly 

standardised to strengthen the activities and classroom discussions. Additionally, the 

task supports the continued development of mental constructions proposed by the 

precedent genetic decomposition (Borji et al., 2018). Subsequently, the exercise 

continued development by reinforcing learners’ conceptual understanding of 

intercepts, vertex, range and transformations. As a result, the exercise had four 

questions that nurtured knowledge of the abovementioned concepts. Therefore, the 

exercise is captured in Table 4.20 below. 
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Table 4.20: Reinforcing the activities and classroom discussion phases 

Exercise (Test) 

Sketched below is the graph of 𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16. 𝐴 and 𝐵 are 𝑥-intercepts of 𝑓. 𝐶 is the turning 
point of 𝑓. 

 

1. Calculate the coordinates of 𝐴 and 𝐵. 
2. Determine the coordinates of 𝐶, the turning point of 𝑓. 

3. Write down the range of 𝑓. 

4. The graph of ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 has a maximum value of 15 at 𝑥 = 2. Determine the values of 

𝑝 and 𝑞. 

 

The structure of the exercise phase was arranged to probe deeper into learners' 

conceptual understanding of quadratic function concepts in intercept, vertex, range 

and transformations. Arnon et al. (2014) state that the exercise phase reinforces the 

concepts learned in the activities and classroom discussions. Therefore, in this study, 

it was necessary to give learners an exercise (test) to strengthen the quadratic function 

concept, which posed severe conceptual obstacles in the activities and classroom 

discussions. Subsequently, during the exercise phase, learners were given a test to 

write in the classroom, unlike the other studies that used the ACE teaching cycle. Since 

in most studies, the last phase is done as a homework activity (Borji et al., 2018; 

Voskoglou, 2013). 

Conversely, in this study, the exercise phase was done as a test and in the 

classroom. Therefore, the test advanced to attain the 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.5, 

3.1, 3.2, 3.3 and 3.4 indicators of understanding. To thoroughly get the level of 

learners' conceptual understanding of quadratic functions, I present a synopsis of 

learners' average marks for the exercise in Table 4.21.  
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Table 4.21: Learners’ average marks per concept 

Concept Total marks Average marks 

Intercepts 3 2,2 

Graph orientation (Vertex and range) 3 1,2 

Transformation 3 0,8 

The Table shown above discloses concepts in which learners posed severe 

conceptual obstacles the most. However, to establish a good comparison between 

Task 0 and the exercise (test), I have conceptualised vertex and range to graphical 

orientation; as in Task 0, it was explored in such a format. Given the synopsis of 

learners' average marks, it can be noted that learners continued to pose conceptual 

obstacles of vertex, range and transformations compared to understanding intercepts. 

Unlike in the activities phase, they posed conceptual obstacles with intercept, 

transformation, and graph orientation. Conversely, learners posed various 

understandings of these concepts in the exercise phase. For example, they posed (1) 

fragmented knowledge of intercepts and vertex; (2) underdeveloped knowledge of 

transformations; and (3) undeveloped knowledge of range concept. A related study by 

Hattikudur et al. (2012) found that conceptual obstacles differed in context when 

dealing with functions posed by the participants. This notion laid out by Hattikudur et 

al. is evident in this study as the learners' average marks are not zero in each of the 

concepts under exploration.  

In contrast to learners' understanding of Task 0, the exercise task improved their 

knowledge of intercepts and graph orientation. Thus, the participants seem to have 

attained the action, process, object, and schema indicators of understanding when I 

use the synopsis of the average marks. Nevertheless, the improvement and the 

concept of range and transformation remained challenging for learners. To explore 

their understanding of quadratic functions well, I have drawn a graph in Figure 4.19 to 

demonstrate the results of Task 0 versus the exercise. For me to be able to draw the 

bar graph, I had to first convert the marks of Task 0 into 10 to correspond with the test. 
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Figure 4.19: Learner’s performance in Task 0 versus the exercise 

The above graph demonstrates the average performance between Task 0 and the 

test. The results demonstrate an improvement in learners' conceptual understanding 

of the quadratic function concept, as shown in Figure 4.19. The comparison of 

learners' conceptual understanding of intercepts revealed an improvement in the test 

compared to Task 0. Learners interacted with the 𝑦-intercept in Task 0 and 𝑥-

intercepts in the test. As noted by Hattikudur et al. (2012), determining the 𝑦-intercept 

is an easy process, as it involves focusing on one value while the other is zero. Yet, it 

is evident from Figure 4.19 that learners failed to grasp the understanding of the 𝑦-

intercept but managed to show an improvement when interacting with the 𝑥-intercepts. 

The question of determining the 𝑥-intercepts is not flexible as determining the 𝑦-

intercept. This is so because 𝑥-intercepts involve the comprehension of various 

methods such as factorisation, simplification, operation skills and finally arriving at a 

solution. Moreover, the participants struggled with understanding the grasp orientation 

and transformations. 

Therefore, given this, I wanted to probe deeper into learners' conceptual 

understanding of quadratic functions in order to track the impact of the ACE cycle on 

the development of their understanding. Subsequently, to explore their understanding, 
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I sampled learners P20, T24, W27, X28 and Y29 in order to explore their knowledge 

of quadratic. The sampling of these scripts was guided by the work of McMillan and 

Schumacher (2001). The two authors explicitly state that sampling should be done to 

choose a few grain-sized participants to studied to yield more insights about the 

concept. Hence, being guided by McMillan and Schumacher, I wanted to delve deeper 

into these sampled learners' conceptual understanding of intercepts, vertex, range, 

and transformation. 

In exploring learners' conceptual understanding of quadratic functions from the test 

task, it is important to look at participants' responses to the test as attached in Table 

4.20. To begin the exploration, I start by probing deeper into learners' conceptual 

understanding of intercepts. Thus, I sampled learners P20 and T24 to probe their 

knowledge of determining the 𝑥-intercept. The learners were given a function in a 

standard form, i.e., 𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16 and were required to determine the 𝑥-

intercepts of the function. Literature on quadratic functions reveals that learners posed 

various conceptual obstacles such as transcription, procedural, inconsistent 

factorisation, and overreliance on the procedural embodiment. For example, Godden 

et al. (2013) noted that their participants posed transcription conceptual obstacles as 

learners were given a quadratic in form 3𝑥2 = 2(𝑥 + 2) and was required to determine 

the 𝑥-intercepts. Conversely, learners transcribed 3𝑥2 = 2(𝑥 + 2) as 3𝑥2 = 2(𝑥 + 3), 

which led to the failure to determine the 𝑥-intercepts. Thus, ignorance of these learners 

from the study by Godden et al. meant their procedural flexibility was undeveloped. In 

a related study by Memnun et al. (2015), learners posed conceptual obstacles of 

comprehending the meaning of 𝑓(𝑥) and 𝑦 as it set to give the function. Similarly, Didiş 

and Erbas (2015) found that learners could not factorise functions where 𝑎 ≠ 1, which 

repeatedly requires them to understand factors in functions thoroughly. As such, some 

used the square root to determine the 𝑥-intercepts, which led to one intercept instead 

of two intercepts. For example, 𝑚2 = 9 was computed 𝑚 = √9 = 3, which demeans 

the essence of quadratic functions. Thus, from these studies, I wanted to delve deeper 

into learners P20 and T24’s understanding of intercept as it is seen as a muddled 

concept in quadratic functions. Therefore, the expected solution for learners to 

understand the 𝑥-intercepts is shown in Table 4.22. 
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Table 4.22: Expected learners' solutions to conceptual understanding the x-intercepts 

𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16  

𝑥-intercepts 

Let 𝑦 = 0 

−2𝑥2 + 4𝑥 + 16 = 0  

𝑥2 − 2𝑥 − 8 = 0  

(𝑥 − 4)(𝑥 + 2) = 0  

∴ 𝑥 = 4 and ∴ 𝑥 = −2 

∴ 𝐴(−2; 0) and 𝐵(4; 0) 

Indicators 1.1, 1.3 

 

Indicator 1.3.1 

Indicator 1.3.2 

 

 

Indicator 1.3.3 

Indicator 1.3.4 

Learners responded to the question of determining the intercept, and the 

participants understood the concept. Thus, to begin delving deeper with learners P20 

and T24’s understanding of intercept, I investigated their answers, which give a 

synopsis of their comprehension as captured in Figure 4.20. 

Learner T24 Learner P20 

  

Figure 4.20: Learners' conceptual understanding of intercepts 

Exploring learners’ conceptual understanding, I looked at them through the lens of 

genetic decomposition and related literature on quadratics and understanding. The 

learners managed to determine the 𝑥-intercepts of the functions but posed some 

conceptual obstacles in their workings. Nevertheless, their posed conceptual obstacle, 

from the final solutions, it is evident that they nurtured the attainment of 1.1 and 1.3 

indicators for understanding. For example, learner T24 started the question with a 
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good step as the participant set 𝑦 = 0 to determine the intercepts. Thus, such skill 

exhibited 1.1 and 1.3 indicators of understanding as the learner demonstrated 

knowledge of the forms of quadratic functions, which posit 1.1 indicators of 

understanding. Subsequently, such a position of knowledge implied that the learner 

comprehends the forms of quadratic functions, which meant that they had a prior 

conceptual understanding of the forms of these functions (Kilpatrick et al., 2002). 

Moreover, learner T24 substituted 𝑦 = 0 into the function to determine the 𝑥-intercepts 

of the function as he efficiently and accurately computed the equation by factorisation 

and later simplified it to obtain the 𝑥-intercept. Therefore, while doing these steps of 

flexibly conducting procedures to determine the 𝑥-intercepts exhibited procedural 

fluency. Consequently, learner T24, coupled with conceptual understanding and 

procedural fluency in determining the 𝑥-intercepts nurtured and attained strategic 

competence as he could formulate that 𝑦 should be zero to determine the 𝑥-intercepts, 

and showed an ability to solve for 𝑥 to determine the 𝑥-intercepts (Groves, 2012). 

Getting more profound with the answer of learner T24, after he made parameter 𝑎 > 0 

by multiplying throughout the equation by a negative one to obtain 2𝑥2 − 4𝑥 − 16 = 0. 

Such competence implies that the learner is efficient about the procedure and can 

carry it appropriately to accurately determine the 𝑥-intercepts, which nurtures 

advanced conceptual understanding. Kilpatrick et al. (2002) assert that conceptual 

understanding is an ability to comprehend mathematical concepts (intercepts and the 

forms of quadratic functions), operations (divided, substituted, and simplified), and 

relations (can note the connection between functions and equations). Additionally, the 

learner divided the equation by 2 to obtain 𝑥2 − 2𝑥 − 8 = 0; thus, this is what Didiş and 

Erbas (2015) noted in their study that participants usually found it difficult to work with 

quadratics where 𝑎 ≠ 1. Therefore, the learner opted for working with 𝑎 = 1 instead of 

𝑎 = 2. However, the divergent of opting for 𝑎 = 1 instead of 𝑎 = 2 does not demean 

the learner T24’s procedural flexibility in determining the 𝑥-intercept. The learner 

showed some schema of ability to make the value of 𝑎 positive by multiplying and 

dividing throughout by positive 2. Therefore, as put by Rittle‐Johnson (2017) that 

procedural flexibility is a long ongoing process that requires the integration of making 

connections as seen from the learner’s work that he substituted, multiplied, divided, 

simplified, and later substituted the values of the 𝑥 int the function to obtain the 
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corresponding values of 𝑦. Therefore, having presented such based-on learner T24 

working on determining the 𝑥-intercepts means that the participant exhibited a 

complete grasp of procedural flexibility and attained the 1.1 and 1.3 indicators of 

understanding.  

In contrast to learner T24, I delved into learner P20's understanding of intercepts 

of the quadratic function. The learner started by omitting the variables of the function 

where the participant wrote 𝑓(𝑥) = −2 + 4 + 16. This option posed transcription 

conceptual obstacles. As noted by Godden et al. (2013), participants in their study 

posed transcription conceptual obstacle as they wrote 3𝑥2 = 2(𝑥 + 2) as 3𝑥2 = 2(𝑥 +

3). These conceptual obstacle yields incorrect solution as the participant will carry out 

a procedure using an incorrect function, impeding the learner's procedural fluency. 

Consequently, learner P20’s writing of 𝑓(𝑥) = −2 + 4 + 16 indicates that the 

participant posits fragmented knowledge of arithmetic and algebraic conceptions, 

which impedes the full development of 1.1 indicators of understanding. Such 

fragmentations inhibit learners' knowledge of noting the relations between arithmetic 

and algebraic concepts. Li (2010) indicated that learners posed undeveloped 

knowledge of variables and opted to demean the notion that a variable is a 

placeholder. Subsequently, the learner who disputes the variable 𝑥 disputes the 

relevance of functions, which inhibits the grasp of the conceptual meaning of a variable 

and a constant. Nonetheless, learner P20 did not proceed to work with 𝑓(𝑥) = −2 +

4 + 16 as in the second step; the participant wrote 𝑥2 − 2𝑥 − 8 = 0. From this step, 

the learner correctly factorised the equation and applied the null factor method by 

writing that (𝑥 − 4)(𝑥 + 2) = 0, and managed to determine the 𝑥-intercepts. However, 

learner P20’s understanding of intercepts is fragmented as he neglected the variable 

in the first step but managed to compute to have the intercepts. Therefore, as the 

learner managed to factorise and apply the null factor method, this meant that the 

participant exhibited a limited procedural fluency as he was not efficient enough to 

work a function and demean it to 𝑓(𝑥) = −2 + 4 + 16. Consequently, the limitation of 

not being fluent in procedures inhibits the full attainment of the 1.1 and 1.3 indicators 

of understanding. 
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The second question focused on the vertex of the function. The expected learners' 

solution to their understanding of the vertex is captured in Table 4.23. 

Table 4.23: Expected solution on learners' conceptual understanding of the turning point 

𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16  

𝑎 = −2, 𝑏 = 4 

𝑥 = −
𝑏

2𝑎
 

𝑥 = −
4

2(−2)
= 1 

Substitute 𝑥 = 1 into 𝑓(𝑥) 

𝑓(1) = −2(1)2 + 4(1) + 16 = 18  

∴ 𝑇𝑃 (1; 18)  

Indicators 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3, 
3.4 

 

Indicator 1.5 

Indicator 1.5.1 

 

Indicator 1.5.2 

Indicator 1.5.3 

In this question, I again sampled the work of P20 and T24 to track their 

understanding of the turning point concept. The learners' work is captured in Figure 

4.21.  

Learner P20 Learner T24 

  

Figure 4.21: Learners' conceptual understanding of vertex concept 

The learners interacted with the vertex concept; some posed understanding, and 

others posited conceptual obstacle with the concept. For example, learner P20 started 

by writing the correct formula to determine the vertex. Such a step exhibited 

instrumental understanding as put by Skemp (1976), and subsequently exhibited 1.1, 

1.5 and 1.6 indicators of understanding. The learner correctly noted that the formula 

𝑥 = −
𝑏

2𝑎
 (1.5 indicators) needs to be used as the function is in a standard form (1.1 

indicators).  Contrarily, in the vignette learner, P20 failed to exhibit procedural fluency 

and strategic competence (Kilpatrick et al., 2002).  The learner was unable to 

substitute into the formula; this meant that his prior conceptual understanding of 𝑥 =
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−
𝑏

2𝑎
 is fragmented, which impedes the grasp of the vertex of the function. Moreover, 

the learner could not carry the procedure efficiently and flexibly to accurately 

determine the solution of the 𝑥-coordinate of the vertex. Instead, learner P20 

substituted and wrote −2(2), which is no longer in a fraction form as it was given in 

the formula, that is, 𝑥 = −
𝑏

2𝑎
. Subsequently, the learner wrote the vertex as (1; 18𝑦); 

this meant that the participant lacked a thorough knowledge of the variable, as noted 

by Li (2010). This led to learners' understanding of vertex to be underdeveloped 

knowledge of vertex as he could not correctly substitute into the formula and failed to 

note the vertex is (1; 18) instead of (1; 18𝑦). Therefore, given that the learner was 

unable to accurately substitute and appropriately carry out the procedure of simplifying 

the solution and being efficient enough to accurately determine the 𝑥-coordinate of the 

function implied that he/she posed underdeveloped procedural fluency, and his 

conceptual understanding of vertex was fragmented. Therefore, given this case, it 

meant that learner P20’s understanding of vertex is at a fragmented procedural-

conceptual understanding stage, which impedes the full development of the iterative 

bidirectional nature of understanding. Subsequently, the absence of the bidirectional 

understanding of vertex inhibits the attainment of 1.1, 1.4, 1.5 and 1.6 indicators of 

understanding.  

In contrast to learner P20, who did not utilise the formula accurately, learner T24 

determined the vertex of the function. For example, learner T24 wrote the formula 𝑥 =

−
𝑏

2𝑎
 and then correctly substituted into the formula as 𝑥 = −

4

2(−2)
= 1. The learner was 

efficient enough to correctly substitute the values of 𝑎 and 𝑏 into the formula. 

Moreover, he accurately carried out the procedure appropriately and flexibly to reach 

the correct answer of the 𝑥-coordinate of the vertex. Thus, skills imply that the learner 

posits procedural fluency in determining the 𝑥-coordinate of the vertex. This meant 

that he held a prior conceptual understanding of the axis of symmetry as he could 

correctly utilise the formula 𝑥 = −
𝑏

2𝑎
. Consequently, the presence of these types of 

understanding that is procedural-conceptual nurtures the development of strategic 

competence of the learner as he could solve for the 𝑦-coordinate of the vertex by 

substituting 𝑥 = 1 into the function to obtain 𝑦 = 18, and he appropriately wrote the 

final answer in an intercept format as (1; 18). Thus, such nurtures the strategic 
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competence of the learner to determine the 𝑥-coordinate of the vertex. Kilpatrick et al. 

(2002) state that strategic competence is the ability to formulate and correctly compute 

to determine the answer. Consequently, learner P20 could correctly execute the 

computation to reach the final solution of 𝑥 as 𝑥 = 1. Additionally, learner T24 went on 

to substitute the value of 𝑥 = 1 into the function to obtain the 𝑦-coordinate of the vertex. 

The learner substituted into the function as 𝑦 = −2(1)2 + 4(1) + 16 = 18. As a result, 

the learner exhibited adaptive reasoning, which is the logical thought to reflect and 

justify (Groves, 2012) the stage of the mathematical proficiencies of a quadratic 

function. The learner could use his logical thought to reflect that to get the 𝑦-coordinate 

of the vertex 𝑥 = 1 has to be substituted into the function. The learner logical 

determined the 𝑥-coordinate first, and secondly, he substituted the value of 𝑥 into the 

vertex to efficiently obtain the corresponding 𝑦-coordinate. Subsequently, learner T24 

posed flexibility as he could cite the correct formula, substitute it to get the 𝑥 value of 

the vertex, and substitute the value of 𝑥 to obtain the 𝑦 value of the vertex as (1; 18). 

Therefore, learner T24 posed developed knowledge of determining the vertex as he 

could portray 1.1, 1.5, 2.1, 2.2, 2.6, 2.7, 3.1, 3.2, 3.3, 3.4 indicators of understanding. 

Questions three and four required the learners to write the range, transform the 

function, and apply transformations to obtain a new function. Almost 70% of the 

learners struggled with the writing of the range, and others did not attempt to write the 

fourth question. The expected solution to these two questions is captured in Table 

4.24 below. 

Table 4.24: Expected solution of the range and transformation 

Range: 

𝑦 ≤ 18 or 𝑦 ∈ (−∞; 18] 

Indicators 1.1, 2.1, 2.2, 2.5 

Indicator 2.5.1 

The graph of ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 has a 
maximum value of 15 at 𝑥 = 2. Determine the 

values of 𝑝 and 𝑞 

The turning point of 𝑓(𝑥): (1; 18) 

The turning point of ℎ(𝑥): (2; 15) 

∴ 𝑝 = −1 and 𝑞 = −3 

Indicators 1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.6, 2.7, 
2.10, 3.1, 3.2, 3.3, 3.4 
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Amongst the learners that struggled with the two questions include learners K15, 

P20, T24 and W27. Thus, the answers are captured in Figure 4.22. 

Learner K15 Learner P20 

  

Learner T24 Learner W27 

  

Figure 4.22: Learners' conceptual obstacle of range concept 

All sampled learners did not correctly respond to the question, and their solutions 

were the same. Consequently, this meant that these learners were unable to attain 

1.1, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.6, 2.7, 2.10, 3.1, 3.2, 3.3 and 3.4 indicators of 

understanding. For example, learners K15 and W27 had an idea that the range 

involves the 𝑦-intercept of the vertex but were not efficient enough to accurately use 

the correct notation to solve the mathematical problem of determining the range. 

Additionally, learner K15 wrote 𝑦 = 18 or 𝑦 ∈ (−∞; 18). This is enough to prove that 

the learner posed some underdeveloped knowledge of the range, as she wrote that 

𝑦 = 18, which no longer gives the range of the function but refers to a stationary point 

on the graph. Consequently, the learner posits a conceptual obstacle of what is the 

range and linear function. Subsequently, this suggested that the learner lacked 

adaptive reasoning of what range is in functions. Kilpatrick et al. (2002) stated that 

adaptive reasoning allows learners to reflect and justify their solutions. Therefore, if 

the learner were posed with adaptive reasoning, they would have reflected that 𝑦 = 18 

is a linear function; however, her silence on that solution implied that he posits 
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undeveloped conceptual knowledge of a function. Moreover, learner K15 failed to note 

the interference of linear functions in her answer but proceeded to write that the range 

of the function is also 𝑦 ∈ (−∞; 18). This answer posed that the learner knew what 

range is but failed to provide a mathematical explanation of how the range is found; 

instead, she used the word “or” while giving the answers. Subsequently, learner K15 

was underdeveloped as she could use the correct notation to give the range and 

thought that the range was a linear function or asymptote. In contrast, learner P20 

determined the range as 𝑦 ≤ 16. The learner equated the range to the 𝑦-intercept of 

the function. As noted by Parent (2015), learners posed a conceptual obstacle of 

vertex and 𝑦-intercept. Parent’s notion was replicated in this study as the participant 

knew that range deals with the value of 𝑦 but failed to note which 𝑦 it deals with. Such 

conceptual obstacle demonstrates an undeveloped knowledge of range as the learner 

focused on 𝑦 without considering which 𝑦 value should be considered. These 

conceptual obstacles inhibit the grasp of 1.1 and 2.5 indicators of understanding. 

Subsequently, this posed that the learner still has underdeveloped knowledge of 

vertex and 𝑦 intercept, which impedes the attainment of the range concept.  

Consequently, through the exercise, it can be noted that range and transformation 

persist in impeding learners' conceptual understanding of quadratic functions. Some 

learners posit undeveloped, underdeveloped, and fragmented knowledge of the 

concepts. For example, learners assumed that range is a linear function by using an 

equal sign instead of inequalities, that is, <, >, ≤, or ≥. Additionally, some failed to use 

the correct brackets to give the range of the function. For example, the learner misused 

the brackets of exclusion only without considering that the range of a function is a set 

of all values that the function takes; hence it cannot be limited to one value. Moreover, 

some posed conceptual obstacles with transformation, which was inhibited by 

learners' understanding of the forms of quadratics. In the next section, findings from 

the ACE cycle are synthesised to give the principal findings of the study.  

4.3. SYNTHESIS OF RESULTS AND FINDINGS 

4.3.1. Principal findings emerging from the ACE cycle 

In this section, I synthesise the research results of the study to offer the principal 

findings, therefore conceptualising findings from the activities, classroom discussions, 
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and exercises, not in isolation but as a whole entity. This is because the ACE cycle is 

intertwined and interwoven, meaning each phase informs the proceeding sections 

(Arnon et al., 2014). Subsequently, to achieve the notion posed by Arnon et al., I have 

synthesised the principal findings emanating from the activities, classroom discussion 

and exercises, resulting in the main findings of the study. Thus, the use of APOS and 

related literature on quadratic functions and understanding led to the realisation of the 

purpose I set in the beginning: “to explore the role of the ACE teaching cycle in 

improving Grade 12 learners’ conceptual understanding of quadratic functions.” 

Subsequently, I reached some principal findings by implementing the ACE cycle.  

Firstly, learners seem to grapple at the action level relating to the knowledge of the 

properties of quadratic functions. These conceptual obstacles include, among others, 

underdeveloped understanding of the forms of quadratics. As a result, an 

underdeveloped understanding of the forms led to learners being over-reliant on the 

standard form only. However, such dependency on the standard form fosters the 

learners to hold a primitive definition of a quadratic function and not be efficient enough 

with the concept. As posited by Parent (2015), quadratic functions are primarily 

defined as 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 when 𝑎 ≠ 0. Consequently, such a definition limits 

learners' conceptual understanding of quadratic functions to standard form only. 

Subsequently, this limitation inhibits the attainment of adaptive reasoning (Groves, 

2012; Kilpatrick et al., 2002) of quadratic functions. Adaptive reasoning of quadratic 

functions affords learners with a capacity to think logically that quadratics can be given 

in the standard, vertex, and factored form; to provide reflections on the concept and 

know that each form reveals specific critical points of the function; and to justify and 

offer explanations apply the transformation concept. Therefore, it is evident that being 

over-reliant on the standard form will limit learners to being fluent with the 𝑦-intercept 

only. Therefore, some learners thought that the vertex is the 𝑦-intercept of the function. 

Ubah and Bansilal (2018) stated that learners preferred the standard form to the vertex 

form when interacting with questions. Due to this overdependence on the standard 

form, Ubah and Bansilal noted that learners posed conceptual obstacles with the 𝑦-

intercept of the standard form and the 𝑦-coordinate of the vertex of the function. Thus, 

these conceptual obstacles impede the iterative view of understanding the concept of 

the forms of quadratic functions. Therefore, the absence of such understanding limits 
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learners not to see quadratic functions as applicable. Consequently, this hinders the 

notion laid by Benning and Agyei (2016) that the knowledge of quadratic functions is 

essential in mathematics as it forms a bridge to understanding other concepts such as 

differential calculus.  

Moreover, learners grappled with parameters as they could neglect their 

(parameters) importance. They misunderstood the parameters which give the 𝑦-

intercept, and the 𝑦-coordinate, of the function. Thus, such conceptual obstacles 

impede the grasp of the vertex of the function and the understanding of the 𝑦-intercept. 

As seen by Fonger et al. (2020), learners thought that the 𝑦 intercept of the standard 

form was the same as the 𝑦-coordinate of the vertex. Additionally, the absence of an 

understanding of parameters inhibits procedural flexibility of quadratic functions. For 

example, it was noted in this study that some learners posed conceptual obstacles 

with the parameter 𝑎. Subsequently, the absence of knowledge of parameters 

impedes their understanding of correctly transitioning from the standard, factored and 

vertex forms. 

Similarly, Ellis and Grinstead (2008) found that learners posed a conceptual 

obstacle with parameter 𝑎, and that they thought that parameter 𝑎 was the slope of 

the function. Moreover, Ellis and Grinstead noted that learners grappled with 

parameters as they felt parameter 𝑎 does not influence the graph. In a related study 

by Nielsen (2015), it was also observed that learners thought that the parameter 𝑎 in 

the quadratic function gives the slope of the graph. Therefore, negligence in 

understanding parameters yields conceptual obstacles with the knowledge of graphing 

the quadratic functions. These included fragmented knowledge with horizontal shifts 

and an unclear understanding of the equation of the line of symmetry, which failed to 

draw the line of symmetry. The difficulties with horizontal shifts were evident in the 

work of Zazkis et al. (2003). In their study, it was noted that learners struggled to 

translate functions correctly (Dede & Soybas, 2011; Yulian, 2018). 

Moreover, learners failed to understand the concept of range as they could not link 

the connection between the range and vertex of the function. These pitfalls resulted in 

their inability to plot the quadratic functions as their knowledge was fragmented and at 

a limited action conception of understanding. The failure to grasp the knowledge of 
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properties of quadratic function poses a challenge for learners to fail to enter the 

process of conception, which hinders the object, and the resultant schema cannot be 

nurtured. 

Secondly, learners posed conceptual obstacles to quadratics while interacting with 

quadratic functions. These conceptual obstacles include failure to simplify the function 

determining roots due to pitfalls in algebraic and arithmetic skills. The lack of algebraic 

and arithmetic skills led to challenges in applying product rules with negative numbers, 

failure to factorise, and pitfalls posed in completing the square. Bossé and 

Nandakumar (2005) also saw the difficulties relating to product rules, and found that 

learners could not correctly product rule, especially if 𝑎 ≠ 1. As also seen in the work 

of Kotsopoulos (2007), learners opted to cancel the negatives. Moreover, learners 

were shown to have a fragmented understanding of the brackets in algebra, and 

conceptual obstacle concerning the meaning of 𝑓(𝑥) or 𝑓(𝑥 − 7), which amounted to 

a limited understanding of the notation used in functions. Furthermore, learners 

confused the formula for the line of symmetry with the quadratic formula, posed a 

limited understanding of the properties of quadratic functions and linear functions, and 

used the word area interchangeably with the axis while referring to the line of 

symmetry. 

Lastly, learners faced difficulty making connections between the forms of quadratic 

functions due to a deficiency in solving techniques. These difficulties include failure to 

transit from graphs to algebraic form due to overreliance on one form. Knuth (2000) 

shows that learners relied on one form due to the absence of knowledge of various 

forms of representations. The transition from one form to another seems to be 

muddled with difficulties in arithmetic and algebraic operational skills. Moreover, 

learners equated 𝑐 and 𝑞, which hindered the development of understanding of the 

transition from one form to another, especially from standard to vertex form.  The 

notion of equating 𝑐 and 𝑞 implied that learners did not fully grasp the role parameters 

in functions. As seen by Didiş et al. (2011), the learners posed a conceptual obstacle 

of the parameters, and assumed that if parameters 𝑏 = 0 and 𝑐 = 0 meant, this was 

not a quadratic function. 
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Furthermore, learners thought of the line of symmetry as the value of  𝑦, which is 

given by the 𝑥 value of the vertex. In contrast, others incorrectly misused the brackets 

without understanding their meaning when writing the range. The misuse of the 

brackets meant that they were grappling with notation. The understanding of notation 

in mathematics is vital. However, Adu-Gyamfi et al. (2019) found that most learners 

posed fragmented knowledge of notation and could not fully simplify it. Therefore, 

these findings meant that they were participants operating at various levels of 

understanding as others posed undeveloped, underdeveloped, fragmented, and 

developed knowledge of quadratic functions. 

4.3.2. Conceptualising the understanding of the quadratic function 

The analysis and discussion of the data in the ACE cycle paved a route for 

conceptualising the conceptual understanding of quadratic functions. Conversely, it is 

noted from the literature that the concept of understanding is fluid (Dhlamini & Luneta, 

2016; Groves, 2012; Hiebert & Lefevre, 1986; Kilpatrick et al., 2002; Rittle‐Johnson, 

2017; Skemp, 1976; Star, 2005). Some hold that knowledge is the same as 

understanding and can be used interchangeable (Star, 2005). Subsequently, I build 

from the view of Star that knowledge and understanding can be used identically. 

Therefore, I have used knowledge and understanding interchangeably in my study, 

anchored by the notion laid by Star. 

Kilpatrick et al. (2002) define conceptual knowledge as an acquaintance of 

mathematical facts, concepts, procedures, and the connection among the concepts. 

Moreover, Kilpatrick et al. assert that conceptual understanding is the learners' grasp 

of mathematical facts, which are connected to multiple conceptions. Drawing from 

these two assertions by Kilpatrick et al., it can be noted that knowledge deals with the 

comprehension of mathematical facts while understanding deals with the grasping of 

mathematical facts. Furthermore, knowledge nurtures the connection of these 

mathematical facts. Skemp (1976) asserts that understanding can be two-fold: 

knowing how and why. As a result, Skemp argues that there are two types of 

understanding: instrumental and relational understanding. Instrumental understanding 

is knowing and applying the procedure, whilst relational understanding is meaningful 

comprehension of why the procedure works and how it connects to other procedures. 
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In contrast, this view posed by Skemp, Hiebert and Lefevre (1986) enriched the 

conception of understanding in mathematics by first asserting that instrumental is 

procedural and relational is conceptual. Procedural knowledge is a comprehension of 

procedures and the rules of manipulation, and conceptual understanding is knowledge 

enriched in relationships, and thus the schemas are linked to form a coherent whole 

(Hiebert & Lefevre, 1986). In a related study, Kilpatrick et al. (2002) extend the 

conceptions of understanding and procedural further by asserting that conceptual 

understanding is the comprehension of concepts, and procedural understanding is the 

skill of carrying out the procedures (Dhlamini & Luneta, 2016; Groves, 2012; Kilpatrick 

et al., 2002). Another study by Star (2005) advanced the attainment of deep procedural 

understanding. In pursuit of what nurtured deep procedural understanding, Star 

asserted that this understanding refers to comprehension, flexibility, and critical 

judgement. Therefore, such conception no longer nurtures only procedural 

understanding but also advances conceptual understanding. However, such a 

conception is challenging as it only stresses three tenets of understanding: 

comprehension, flexibility and critical, which neglects the view that understanding 

develops in an iterative process. Subsequently, Rittle‐Johnson (2017) extends what 

Star termed as deep procedural understanding, thereby asserting that the attainment 

of conceptual understanding nurtures procedural and contrariwise. Therefore, Rittle-

Johnson maintains that knowing more than one procedure and carrying them flexibly, 

accurately, efficiently, and appropriately refers to procedural flexibility. 

Consequently, I draw from Rittle-Johnson’s work to conceptualise what it means 

to understand quadratic functions flexibly. The learners' conceptual understanding of 

quadratic functions unearths what they are and what makes them. Quadratic functions 

are polynomials of the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 where 𝑎 ≠ 0 and the values of 𝑎, 𝑏 

and 𝑐 are integers. As a result, a quadratic function can also be expressed in a vertex 

form as 𝑓(𝑥) = 𝑎(𝑥 + 𝑝)2 + 𝑞 and in a factored form as 𝑓(𝑥) = 𝑎(𝑥 + 𝑥1)(𝑥 + 𝑥2). 

Subsequently, these forms of quadratic functions reveal specific critical points 

regarding the function. For example, the standard form indicates the 𝑦-intercept of the 

function. Hence, the learners' understanding of 𝑦-intercept requires them to: (1) know 

the forms of quadratic functions; (2) be able to flexibly transit from one form to another 

efficiently and accurately to appropriately carry out the procedure to solve for the value 
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of the 𝑦-intercept; (3) and eventually, demonstrating the conceptual meaning of the 𝑦-

intercept. Additionally, the vertex form reveals the turning point of the graph. For 

example, the learner's conceptual understanding of the vertex permits him/her to note 

the connections between the turning point and the axis of symmetry. The vertex is 

given as (𝑝; 𝑞) and the value of 𝑝 gives the axis of symmetry as 𝑥 = 𝑝. Moreover, the 

value of 𝑝 is determined as follows in the standard form 𝑥 = −
𝑏

2𝑎
. Therefore, 

understanding the vertex and axis of symmetry is iterative as each complements the 

other. Thus, this notion fosters the connection of the concepts in quadratic function. 

Furthermore, the factored form reveals the 𝑥-intercepts of the function. Therefore, for 

one to compute the 𝑥-intercept, it means that they should tap into their prior 

conceptions of quadratic equations. Thus, the conceptualisation of quadratic functions 

implies that the learner posits procedural flexibility of quadratics as they can flexibly, 

accurately, efficiently, and appropriately utilise the forms to comprehend the concepts 

of vertex, 𝑦-intercept, 𝑥-intercepts, an axis of symmetry, and transformation. Thus, the 

quadratic function understanding is the flexibility of the learner to comprehend their 

forms as they posit critical points and appreciate them as coherently linked schemas 

of interrelated concepts.  

Therefore, to conceptualise what it means to understand, I hypothesise a model 

that captures conceptual understanding of quadratic functions. The model is anchored 

by literature on understanding. Thus, it is a hypothesis and still permits revision. 
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Figure 4.23: The iterative bidirectional model of conceptual understanding 

I conceptualise that procedural flexibility captures both types of understanding, i.e., 

instrumental, and relational, in an iterative manner. Additionally, in comprehending 

quadratic functions, I hold that a concept first nurtures procedural knowledge and vice 

versa. Moreover, procedural knowledge is more than formulas, but it is a cognitive 

process that a learner undergoes to nurture conceptual knowledge. Therefore, 

procedural knowledge entails the efficiency and ability to carry out procedures to 

determine solutions accurately and appropriately. Thus, these flexibility skills nurture 

conceptual understanding as they complement strategic competence and adaptive 

reasoning in quadratic functions. Subsequently, through this conceptualising of 

understanding, I present the model below as a hypothesis of what it means to 

understand quadratic functions (see Figure 4.23). 

4.4. SUMMARY OF THE CHAPTER 

This chapter dealt with the analysis of the collected data. To ensure the validity of the 

data, triangulation was adhered to. The process of data analysis was guided by the 

theoretical framework of the APOS theory and related literature on understanding. The 

chapter has three sections: data analysis and discussion, synthesis of principal 

findings and the summary of the chapter. The analysis and discussion section 

informed the synthesis of the principal findings through the activities, classroom 
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discussions and the exercise phase. The next chapter presents the conclusions and 

recommendations of the study. 
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5. CHAPTER FIVE: RECOMMENDATIONS AND 

CONCLUSION 

5.1. INTRODUCTION 

Literature reveals that learners' conceptual understanding of quadratic functions is 

undeveloped, underdeveloped, and fragmented, which impedes the full grasp of the 

concept (Parent, 2015; Nielsen, 2015; Eraslan, 2005; Ellis & Grinstead, 2008). For 

example, Parent (2015) noted that a result of overdependence on the standard form 

over the vertex and factored form inhibited learners' conceptual understanding of the 

𝑦-intercept of the function versus the 𝑦-coordinate of the vertex. In a related study, 

Nielsen (2015) noted the interference of the linear function concepts. Similarly, Ellis 

and Grinstead (2008) observed that learners thought that parameter 𝑎 refers to the 

slope of the function. Subsequently, unfocused attention to remedy these conceptual 

obstacles impedes learners' comprehension of the concept. 

Consequently, the study sought to explore how learners’ conceptual 

understanding of quadratic functions could be improved through the ACE teaching 

cycle. The study will potentially add knowledge to the literature on the learners' 

conceptual understanding of quadratic functions. Moreover, the study paves the way 

for further exploration of how APOS can develop learners' conceptual understanding 

of quadratic functions. To achieve this, chapter five is divided into six sections. I begin 

by presenting the research design and methods that the study utilised to pursue the 

purpose. Additionally, the findings of the study are interpreted, and subsequently, the 

recommendations, contributions and limitations of the study are presented in 

subsequent sections. Lastly, the conclusion is drawn, and the summary of the chapter 

is made.  

5.2. RESEARCH DESIGN AND METHOD 

In this study, I adopted an interpretive approach to qualitative research and an 

exploratory case study design. Therefore, I employed the constructs of ACE teaching 

cycle to collect qualitative data by conforming to Merriam’s (1998) case study design. 

Thus, qualitative data were collected using activities and exercises that conform to 

documents held by Merriam. Moreover, I used classroom discussions which conform 
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to Merriam’s unstructured interviews. Subsequently, I have set boundaries of the study 

as Grade 12 learners’ conceptual understanding of quadratic functions concepts, in 

line with the case study design as put by Merriam. 

Additionally, I developed a genetic decomposition which informed the ACE cycle. 

Subsequently, I collected qualitative data using Task 0 and additional learning tasks 

in the activities phase. Moreover, the data collected from the activities phase guided 

the classroom discussions. The activity and classroom discussion data successfully 

informed the exercise phase. I used a test in the exercise to reinforce the activities 

and classroom discussions phase. Therefore, the ACE cycle was used as a research 

design to inform the case study design. 

5.3. INTERPRETATION OF RESEARCH FINDINGS 

In this section, I will conceptualise the findings of the study to answer the research 

question posed at the beginning. Therefore, to respond to this question, I have divided 

this section into two subsections, namely (1) the principal findings of the study and (2) 

the research question. 

5.3.1. The principal findings of the study 

Data were collected using the constructs of the ACE cycle, and analysed and 

discussed using literature on understanding, APOS, and quadratic functions to provide 

the principal findings of the study. In this study, learners interacted with quadratic 

function questions, and I wanted to explore their knowledge based on the forms of 

quadratic functions, the axis of symmetry, the domain and range of quadratic 

functions, the 𝑦-intercept, the transformation of the function and the graph orientation. 

Subsequently, some principal findings are reached after the implementation of the 

ACE cycle. Firstly, learners seem to over rely on the standard form over the vertex 

and factored form. For example, the learners used the vertex form 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 +

𝑞, to write down the 𝑦-intercept as 𝑦 = 𝑞. Such conceptual obstacle meant that these 

learners posit an undeveloped conception of the forms of quadratic functions. 

Secondly, they (learners) posed conceptual obstacle of the quadratic formula, i.e., 𝑥 =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 and the axis of symmetry formula for the 𝑥-coordinate, i.e., 𝑥 = −

𝑏

2𝑎
. For 

example, learners are given a function in a standard form, they mistakenly use the 
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values of 𝑎, 𝑏, and 𝑐 to determine the vertex whilst the turning point is determined by 

only the values of 𝑎 and 𝑏. Hence, misconceived understanding of which value gives 

the 𝑥-coordinate of the vertex does not only impede the understanding of the turning 

point but also inhibits the comprehension of the axis of symmetry. Thirdly, some could 

not correctly substitute and simplify the formula 𝑥 = −
𝑏

2𝑎
. For example, they wrote the 

correct formula 𝑥 = −
𝑏

2𝑎
 but they substituted one value only as 𝑥 = −2(2) and ignored 

the value of 𝑏. Such ignorance explains that these learners were not entirely exhibiting 

procedural flexibility with the equation of the line of symmetry. Fourthly, the learners 

misunderstood the 𝑦-intercept of the function and the 𝑦-coordinate of the vertex, 

especially when the function was in vertex form where they equated 𝑐 and 𝑞.  

Subsequently, the misconceived concept of the vertex impeded their knowledge of the 

range of the quadratic function. Lastly, learners posed an underdeveloped conception 

of linear functions concept as they thought that parameter 𝑎 in the standard form 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is the gradient.  

5.3.2. The research question of the study 

This study initially intended to explore the role of the ACE teaching cycle in improving 

Grade 12 learners’ conceptual understanding of quadratic functions. To pursue the 

purpose of the study, the study answered the following research question: 

• How does the ACE teaching cycle improve learners’ conceptual understanding 

of quadratic functions? 

Before I respond to the question posed at the beginning of this study, I would first 

explain what I mean by conceptual understanding quadratic functions. The quadratic 

understanding function implies that the learner posits procedural flexibility of 

quadratics as they can flexibly, accurately, efficiently, and appropriately utilise the 

forms to comprehend the concepts of vertex, 𝑦-intercept, 𝑥-intercepts, an axis of 

symmetry, and transformation. Moreover, it is the flexibility of the learner to understand 

the forms of quadratic functions as they posit critical points and appreciate them as 

coherently linked schemas of interrelated concepts. As a result of this conceptualising 

of what it means to understand quadratic functions, I can answer the research 

questions in line with the principal findings. The question posed is twofold. Firstly, it 
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requires me to unearth the conceptual obstacles that learners posed; and secondly, it 

focuses of how the ACE teaching cycle improved the learners' conceptual 

understanding. Therefore, learners posed conceptual obstacles during the three 

phases of the ACE cycle. For example, some learners seemed to rely mainly on the 

standard form over the vertex and factored form, which impedes understanding the 

forms of quadratics. Additionally, the learners misunderstood the quadratic formula as 

they misused it to determine the 𝑥-coordinate of the vertex. In contrast, some wrote 

the correct formula for the axis of symmetry but were not efficient enough to accurately 

substitute into the formula  𝑥 = −
𝑏

2𝑎
. Moreover, learners are confused about the 𝑦-

intercept of the function and the 𝑦-coordinate of the vertex. Lastly, they posed an 

undeveloped analogy of linear and quadratics as they misconceived the meaning of 

the value of 𝑎 in the linear and quadratic functions.  

Consequently, the ACE teaching cycle improved learners' conceptual 

understanding of quadratic functions. The ACE cycle unearthed their conceptual 

obstacles in the activities, classroom discussions, and exercise phases as the process 

allow learners to reflect on the conceptual obstacles through classroom discussion as 

experienced from the activities phase. Subsequently, the ACE teaching cycle 

effectively remedied their conceptual obstacle by exposing them to constructive 

learning tasks through activities, classroom discussions and exercises. Therefore, 

learners' understanding revealed some knowledge traits in the exercise phase. For 

example, they were efficient and flexible in determining the intercepts and vertex of 

quadratic functions. 

Additionally, learners in the exercise improved their comprehension of the intercept 

and vertex concept by flexibly and efficiently being competent to substitute 𝑥 = 0 into 

functions. Thus, the ability to work with quadratic functions flexibly and efficiently yields 

the skill of competency in carrying out the procedure. Subsequently, this meant that 

the learner had developed their procedural flexibility to carry out procedures accurately 

and appropriately. Such competencies reflected improved learners' procedural 

flexibility of quadratic functions. Additionally, the competencies implied that learners 

could iterate in their understanding as they could use procedures to develop concepts 

and vice versa.  
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5.4. RECOMMENDATIONS 

This study has implications for the learning of quadratic functions, as it unpacks the 

concept to the point that one should not confine it to memorising it and getting correct 

answers but as an essential source of knowledge. Additionally, the study offers 

affordances to teachers to enhance learners' conceptual understanding of the concept 

entirely and provides them with a trajectory to improve their understanding of quadratic 

functions through the ACE teaching cycle. Therefore, I recommend that future studies 

be broadened on learners understanding of the vertex and the 𝑦-intercept of quadratic 

functions. 

5.5. CONTRIBUTIONS OF THE STUDY 

The study potentially adds knowledge to the body of mathematics literature on 

learners' conceptual understanding of quadratic functions. Additionally, the study has 

broadened the scope of research on how learners understand the quadratic function 

within the forms of quadratic functions, the axis of symmetry, the domain and range of 

quadratic function, the 𝑦-intercept, the transformation of the function, and the graph 

orientation. Moreover, the study adds to the literature that conceptual understanding 

quadratic functions entails the flexibility of the learner to comprehend the forms 

efficiently and appropriately as they posit critical points and appreciate them as 

coherently linked schemas of interrelated concepts. For example, if a learner is given 

a function in the standard form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, to explain the learner's 

understanding of the form implies that the learner can efficiently determine the vertex 

as (−
𝑏

2𝑎
; 𝑓 (−

𝑏

2𝑎
)) and appropriately acknowledge that −

𝑏

2𝑎
 gives the line of symmetry 

of the function. Thus, the vertex advances in understanding coherent linked concepts 

such as turning point and the axis of symmetry. 

5.6. LIMITATIONS OF THE STUDY 

Literature reveals two notions of quadratic functions: the algebraic and geometric 

parts. Therefore, I did not look at the geometric understanding of quadratic functions. 

Contrarily, I limited my study to algebraic knowledge of quadratic functions because 

of the silent issues related to what happens in the mathematics classroom while 
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learning the concept. Thus, given the context that learners usually interact with the 

algebraic part of quadratic functions, I did not want to change the context but to unearth 

the silent issues in understanding the concept. Therefore, anchored by the context, I 

limited the exploration to the algebraic part of quadratic functions. Consequently, the 

data unearthed from the algebraic part are worth researching. 

5.7. CONCLUSION 

The study revealed that learners operated in various levels of the APOS construct on 

specific concepts of a quadratic function. The implementation of the ACE teaching 

cycle unearthed conceptual obstacles that learners posed. Firstly, learners posed an 

underdeveloped knowledge of the forms of quadratic functions. Consequently, such 

underdeveloped understanding posed overreliance on the standard form only. 

Subsequently, dependency on the standard form inhibited the learners' procedural 

flexibility to transit from one form efficiently and appropriately to another. This led to 

failure in attaining an action-process conception of the forms of the quadratic functions, 

which impedes the full grasp of a schema for understanding the forms. Secondly, the 

learners misunderstood the 𝑦-intercept of the function and the 𝑦-coordinate of the 

vertex. Lastly, learners posed challenges with the parameter 𝑎 in the standard form, 

i.e., 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, which was caused by an undeveloped knowledge of linear 

functions. As a result of these conceptual obstacles unearthed and remedied by the 

ACE teaching cycle, it was evident that most learners posed a fragmented 

understanding of quadratic functions. Generally, most learners were operating at the 

action-process level of understanding quadratic functions. For example, they could not 

flexibly and efficiently transit from one form to another, which is the basis of 

conceptualising the understanding of quadratic functions. Subsequently, only six 

learners managed to interiorise the action level into the process and limited object-

level understanding of quadratic functions. These learners could transition from one 

form to another but were inhibited from exhibiting strategic competency entirely in the 

learning tasks. Inhibiting learners' strategic competence impedes the full grasp of 

quadratic functions. Therefore, none of the learners reached the schema level of 

understanding of the quadratic functions. This was caused by the fragmented 

knowledge of algebra that they posed. Consequently, the ACE cycle did not fully 
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improve learners' conceptual understanding of quadratic functions as the learners 

could not entirely attain a coherent mental structure of the actions, processes, objects, 

and schemas. 

5.8. SUMMARY OF THE CHAPTER 

This chapter dealt with the recommendations and conclusions. In this chapter, I 

presented the design issues which guided the study. Additionally, the principal findings 

were outlined, and I answered the research question. Moreover, I offered the 

recommendations and limitations of the study. Lastly, I considered learners' levels of 

understanding based on the APOS theory. 
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APPENDIX A: LETTER TO DEPARTMENT OF EDUCATION 
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APPENDIX B: LEARNER’S CONSENT FORM 
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APPENDIX C: LETTER TO THE PRINCIPAL 
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APPENDIX D: LEARNING UNIT 

 

 

Task 0 

1. Determine the 𝑦-intercept for the following equation: 𝑦 = −3(𝑥 − 4)2 + 100 

2. Clearly explain in words all the transformations that must be applied to 𝑦 = 𝑥2 to obtain the graph 

of the function below 𝑦 = −
1

4
(𝑥 + 6)2 + 12 

3.Sketch each quadratic function and fill in the blanks below: 

3.1. 𝑦 = (𝑥 − 2)2 + 3 

Vertex; Axis of symmetry; 𝑥-intercepts; 𝑦-intercept 

3.2. 𝑦 = −(𝑥 + 5)2 − 2 

Vertex; Axis of symmetry; Max/Min value; Range 

3.4. 𝑦 = 0,5(𝑥 − 4)2 + 5 

Vertex; Axis of symmetry; Step pattern; Domain 
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PART C 
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Exercise (Test) 

Sketched below is the graph of 𝑓(𝑥) = −2𝑥2 + 4𝑥 + 16. 𝐴 and 𝐵 are 𝑥-intercepts of 𝑓. 𝐶 is the turning 
point of 𝑓. 

 

1. Calculate the coordinates of 𝐴 and 𝐵. 

2. Determine the coordinates of 𝐶, the turning point of 𝑓. 

3. Write down the range of 𝑓. 

4. The graph of ℎ(𝑥) = 𝑓(𝑥 + 𝑝) + 𝑞 has a maximum value of 15 at 𝑥 = 2. Determine the values of 𝑝 

and 𝑞. 
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APPENDIX E: EMERGED CODES AND THEMES 

Main concepts 

Category Descriptive themes Codes 

Quadratic 

function 

concept 

Properties of quadratic 

functions and graphing 

methods 

 

• The forms quadratic function 

• The axis of symmetry 

• The domain and range of the 

quadratic function 

• The 𝑦-intercept 

• The transformation involving the 

quadratic function 

• Can graph the function given the 

vertex form transformation 

• Uses the intercept method 

• Can correctly plot the 𝑦-intercept 

Quadratic functions 

connections through 

solving techniques 

• Can connect the graph to the 

equation 

• Can connect the Table with a 

graph 

• Factoring for finding the roots 

• Completing the square to move 

from standard form to vertex form 

• Line of symmetry formula 

• Incorrect use of the quadratic 

formula 

• Tries but not able to solve  
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Conceptual obstacles • Preferred working with the 

standard form compared to the 

other forms, which are the vertex 

and factored forms.  

• Conceptual obstacles regarding 

the 𝑦-intercept of the function and 

the 𝑦-intercept of the vertex. 

• The confusion of the parameters 

of the quadratic function, 

especially the 𝑎. 

• Unable to represent the range of 

the function using different 

notations 
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APPENDIX F: ETHICAL CLEARANCE CERTIFICATE 
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APPENDIX G: APPROVAL FROM DEPARTMENT OF EDUCATION 
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APPENDIX H: RESEARCH PROTOCOL 

The instructions for data collection for the study: 

• To commence the study, I sampled 30 learners to participate in the study 

• The sampled participants interacted with the learning unit and were tested for 

two weeks. 

• The learners were allocated 50 minutes daily to interact with Task 0, the 

learning unit, and the test. 

• On day 1, the learners were made aware of their purpose in participating in the 

study and were given ground rules. Later after the introduction, they were given 

Task 0 to write and submit.  

• On days 2-3, we reflected on what we on the previous day. Then after learners 

were given the learning unit again to interact with PART A of the learning unit. 

• On days 4-6, we reflected on what we on the previous day. Then after learners 

were given the learning unit again to interact with PART B of the learning unit. 

• On days 7-9, we reflected on what we on the previous day. Then after learners 

were given the learning unit again to interact with PART C of the learning unit. 

• On the last day, i.e., day 10. We reflected on what we did from day 1-9 and 

after learners wrote a test.  

• Note: 

o During the data collection, I may read the question upon request, but I 

am not to assist in giving learners answer 

o I may scaffold learners if they have a conceptual obstacle. 

o Each day learners were provided with a task and collected after 

interacting with it. 

o Learners can discuss together if they need to, as it is supported by the 

ACE teaching cycle. 

• At no point am I to assist the learners in solving the problems. 
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APPENDIX I: APPROVAL FROM FACULTY 
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APPENDIX J: EDITORIAL LETTER 

 


